Comptes Rendus
Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive
Using a virtual skeleton to increase printability of topology optimized design for industry-class applications
Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1104-1121.

This article broadens the scheme previously developed to associate topology optimization with additive manufacturing through the use of a virtual skeleton, consisting in solving the same physical problem with a discrete approach and then with a continuum one. This procedure for 3D designs is applied to various domain geometries, to demonstrate its pertinence on high-resolution industrial cases. An algorithm searching for the best printing direction, exploring the solid angle, is also described and validated; the surface-shaped presentation of the result allows immediate understanding of the influence of the discrete problem parameters, while its running time is much lower than a unique continuum optimization simulation, which proves the attractiveness of the method. In the three examples studied, the procedure outputs exhibit greater printability than the ones produced by traditional methods in each of the printing direction tested, albeit responsibility is left to the final user to choose his best trade-off. Furthermore, the unprintable zones are readily displayed to be either reworked or supported. Explanations about increase of convergence likelihood on discrete structures despite the geometry complexity of an industrial application are also provided and demonstrated.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.08.005
Mots clés : Topology Optimization, Additive manufacturing, Overhang angles, 3-D printing, 3-D design, Virtual skeleton
Yoram Mass 1 ; Oded Amir 1

1 Faculty of Civil Engineering, Technion – Israel Institute of Technology, Technion City, Haifa 3200003, Israel
@article{CRMECA_2018__346_11_1104_0,
     author = {Yoram Mass and Oded Amir},
     title = {Using a virtual skeleton to increase printability of topology optimized design for industry-class applications},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1104--1121},
     publisher = {Elsevier},
     volume = {346},
     number = {11},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.005},
     language = {en},
}
TY  - JOUR
AU  - Yoram Mass
AU  - Oded Amir
TI  - Using a virtual skeleton to increase printability of topology optimized design for industry-class applications
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1104
EP  - 1121
VL  - 346
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.005
LA  - en
ID  - CRMECA_2018__346_11_1104_0
ER  - 
%0 Journal Article
%A Yoram Mass
%A Oded Amir
%T Using a virtual skeleton to increase printability of topology optimized design for industry-class applications
%J Comptes Rendus. Mécanique
%D 2018
%P 1104-1121
%V 346
%N 11
%I Elsevier
%R 10.1016/j.crme.2018.08.005
%G en
%F CRMECA_2018__346_11_1104_0
Yoram Mass; Oded Amir. Using a virtual skeleton to increase printability of topology optimized design for industry-class applications. Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1104-1121. doi : 10.1016/j.crme.2018.08.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.005/

[1] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, US Patent 4,575,330, March 11, 1986.

[2] H. Lipson; M. Kurman Fabricated: The New World of 3D Printing, John Wiley & Sons, 2013

[3] D. Gu; W. Meiners; K. Wissenbach; R. Poprawe Laser additive manufacturing of metallic components: materials, processes and mechanisms, Int. Mater. Rev., Volume 57 (2012) no. 3, pp. 133-164

[4] W.E. Frazier Metal additive manufacturing: a review, J. Mater. Eng. Perform., Volume 23 (2014) no. 6, pp. 1917-1928

[5] T.T. Le; S.A. Austin; S. Lim; R.A. Buswell; R. Law; A.G. Gibb; T. Thorpe Hardened properties of high-performance printing concrete, Cem. Concr. Res., Volume 42 (2012) no. 3, pp. 558-566

[6] M.P. Bendsøe; O. Sigmund Topology Optimization: Theory, Methods and Applications, Springer, Berlin, 2003

[7] M. Bruggi; C. Cinquini Topology optimization for thermal insulation: an application to building engineering, Eng. Optim., Volume 43 (2011) no. 11, pp. 1223-1242

[8] T.E. Bruns Topology optimization of convection-dominated, steady-state heat transfer problems, Int. J. Heat Mass Transf., Volume 50 (2007) no. 15, pp. 2859-2873

[9] J. Alexandersen; N. Aage; C.S. Andreasen; O. Sigmund Topology optimisation for natural convection problems, Int. J. Numer. Methods Fluids, Volume 76 (2014) no. 10, pp. 699-721

[10] S. Bose; S. Vahabzadeh; A. Bandyopadhyay Bone tissue engineering using 3D printing, Mater. Today, Volume 16 (2013) no. 12, pp. 496-504

[11] I. Gibson; D.W. Rosen; B. Stucker et al. Additive Manufacturing Technologies, vol. 238, Springer, 2010

[12] M.P. Bendsøe; N. Kikuchi Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., Volume 71 (1988) no. 2, pp. 197-224

[13] B. Leutenecker-Twelsiek; C. Klahn; M. Meboldt Considering part orientation in design for additive manufacturing, Proc. CIRP, Volume 50 (2016), pp. 408-413

[14] A.M. Phatak; S. Pande Optimum part orientation in rapid prototyping using genetic algorithm, J. Manuf. Syst., Volume 31 (2012) no. 4, pp. 395-402

[15] M.P. Zwier; W.W. Wits Design for additive manufacturing: automated build orientation selection and optimization, Proc. CIRP, Volume 55 (2016), pp. 128-133

[16] D. Thomas The Development of Design Rules for Selective Laser Melting, University of Wales, UK, 2009 (PhD thesis)

[17] D. Brackett; I. Ashcroft; R. Hague Topology optimization for additive manufacturing, Austin, TX, USA (2011), pp. 348-362

[18] M. Leary; L. Merli; F. Torti; M. Mazur; M. Brandt Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures, Mater. Des., Volume 63 (2014), pp. 678-690

[19] A.T. Gaynor; J.K. Guest Topology optimization for additive manufacturing: considering maximum overhang constraint, 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2014, pp. 16-20

[20] A.T. Gaynor; J.K. Guest Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design, Struct. Multidiscip. Optim., Volume 54 (2016) no. 5, pp. 1157-1172

[21] M. Langelaar An additive manufacturing filter for topology optimization of print-ready designs, Struct. Multidiscip. Optim. (2016), pp. 1-13 | DOI

[22] M. Langelaar Topology optimization of 3D self-supporting structures for additive manufacturing, Addit. Manuf. (2016) | DOI

[23] E. van de Ven; R. Maas; C. Ayas; M. Langelaar; F. van Keulen Continuous front propagation-based overhang control for topology optimization with additive manufacturing, Struct. Multidiscip. Optim. (2018), pp. 1-17 | DOI

[24] X. Guo; J. Zhou; W. Zhang; Z. Du; C. Liu; Y. Liu Self-supporting structure design in additive manufacturing through explicit topology optimization, Comput. Methods Appl. Mech. Eng., Volume 323 (2017), pp. 27-63

[25] O. Amir; Y. Mass Topology optimization for staged construction, Struct. Multidiscip. Optim. (2017), pp. 1-16 | DOI

[26] G. Allaire; C. Dapogny; R. Estevez; A. Faure; G. Michailidis Structural optimization under overhang constraints imposed by additive manufacturing technologies, J. Comput. Phys., Volume 351 (2017), pp. 295-328

[27] Y. Mass; O. Amir Topology optimization for additive manufacturing: accounting for overhang limitations using a virtual skeleton, Addit. Manuf., Volume 18 (2017), pp. 58-73

[28] A.M. Mirzendehdel; K. Suresh Support structure constrained topology optimization for additive manufacturing, Comput. Aided Des., Volume 81 (2016), pp. 1-13

[29] X. Qian Undercut and overhang angle control in topology optimization: a density gradient based integral approach, Int. J. Numer. Methods Eng. (2017) | DOI

[30] W. Hemp Optimum Structures, Oxford University Press, 1973

[31] F. Wang; B.S. Lazarov; O. Sigmund On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., Volume 43 (2011) no. 6, pp. 767-784

[32] B.S. Lazarov; F. Wang; O. Sigmund Length scale and manufacturability in density-based topology optimization, Arch. Appl. Mech., Volume 86 (2016) no. 1, pp. 189-218

[33] T.E. Bruns; D.A. Tortorelli Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Eng., Volume 190 (2001) no. 26, pp. 3443-3459

[34] B. Bourdin Filters in topology optimization, Int. J. Numer. Methods Eng., Volume 50 (2001) no. 9, pp. 2143-2158

[35] M.P. Bendsøe Optimal shape design as a material distribution problem, Struct. Optim., Volume 1 (1989) no. 4, pp. 193-202

[36] O. Sigmund; S. Torquato Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, Volume 45 (1997) no. 6, pp. 1037-1067

[37] N. Aage; B.S. Lazarov Parallel framework for topology optimization using the method of moving asymptotes, Struct. Multidiscip. Optim., Volume 47 (2013) no. 4, pp. 493-505

[38] O. Amir; N. Aage; B.S. Lazarov On multigrid-cg for efficient topology optimization, Struct. Multidiscip. Optim., Volume 49 (2014) no. 5, pp. 815-829

[39] A. Clausen; E. Andreassen On filter boundary conditions in topology optimization, Struct. Multidiscip. Optim., Volume 56 (2017) no. 5, pp. 1147-1155

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A direct approach for continuous topology optimization subject to admissible loading

Zied Kammoun; Hichem Smaoui

C. R. Méca (2014)


Advanced mask manufacturing

Carlo Reita

C. R. Phys (2006)


Principle of Virtual Work as Foundational Framework for Metamaterial Discovery and Rational Design

Francesco dell’Isola; Anil Misra

C. R. Méca (2023)