[Une approche directe pour l'optimisation de la topologie continue sous chargement admissible]
Dans le présent article, une méthode est proposée pour l'optimisation de la topologie des milieux continues soumis à des conditions d'admissibilité statique et plastique relativement à un chargement imposé. Une propriété essentielle de la méthode est qu'en utilisant une discrétisation par éléments finis, la forme du problème d'optimisation de la topologie résultant est similaire à celle du problème direct de l'analyse limite formulé selon l'approche statique. La méthode proposée est formulée en déformations planes en utilisant un matériau de Tresca. Elle est illustrée à travers des exemples de problèmes issus de la littérature.
In the present paper, a method is proposed for topology optimization of continuum structures subject to static and plastic admissibility conditions relative to a prescribed load. A key feature of the method is that, using a finite-element discretization, the form of the resulting topology optimization problem is similar to that of the direct static approach of the limit analysis problem. The proposed method is formulated in plane strain using Tresca materials and is illustrated on example problems taken from the literature.
Accepté le :
Publié le :
Mot clés : Plastique, Topologie, Optimisation, Continuum, Analyse limite
Zied Kammoun 1 ; Hichem Smaoui 2
@article{CRMECA_2014__342_9_520_0, author = {Zied Kammoun and Hichem Smaoui}, title = {A direct approach for continuous topology optimization subject to admissible loading}, journal = {Comptes Rendus. M\'ecanique}, pages = {520--531}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2014}, doi = {10.1016/j.crme.2014.06.003}, language = {en}, }
TY - JOUR AU - Zied Kammoun AU - Hichem Smaoui TI - A direct approach for continuous topology optimization subject to admissible loading JO - Comptes Rendus. Mécanique PY - 2014 SP - 520 EP - 531 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2014.06.003 LA - en ID - CRMECA_2014__342_9_520_0 ER -
Zied Kammoun; Hichem Smaoui. A direct approach for continuous topology optimization subject to admissible loading. Comptes Rendus. Mécanique, Volume 342 (2014) no. 9, pp. 520-531. doi : 10.1016/j.crme.2014.06.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.003/
[1] Material interpolation schemes in topology optimization, Arch. Appl. Mech., Volume 69 (1999) no. 9–10, pp. 635-654
[2] Topology optimization of continuum structures: a review, Appl. Mech. Rev., Volume 54 (2001) no. 4, pp. 331-390
[3] Conception optimale de structures, Coll. Math. Appl., vol. 58, Springer, 2007
[4] Multigrid implementation of cellular automata for topology optimization of continuum structures, Comput. Model. Eng. Sci., Volume 51 (2009) no. 1, p. 1
[5] Topology optimization of linear elastic structures, Department of Mathematical Sciences, University of Bath, UK, 2013 (PhD thesis)
[6] New approaches for shape and topology optimization for crashworthiness, NAFEMS World Congress, École centrale de Lille, France, 2011
[7] A critical review of established methods of structural topology optimization, Struct. Multidiscip. Optim., Volume 37 (2009), pp. 217-237
[8] Decomposition in optimal plastic design of structures, Int. J. Solids Struct., Volume 17 (1981) no. 1, pp. 39-56
[9] Adaptive topology optimization of elastoplastic structures, Struct. Optim., Volume 15 (1998) no. 2, pp. 81-91
[10] Optimization of a frame structure subjected to a plastic deformation, Struct. Optim., Volume 10 (1995) no. 3–4, pp. 197-208
[11] Théorie des charges limites : poinçonnement d'une plaque par deux poinçons symétriques en déformation plane, C. R. Acad. Sci. Paris, Volume 265 (1967), pp. 869-872
[12] Théorie de la plasticité pour les applications à la mécanique des sols, Eyrolles, Paris, 1974
[13] Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical, J. Méc. Appl. (now Eur. J. Mech. A, Solids), Volume 2 (1978), pp. 167-196
[14] www.mosek.com (C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark)
, 2002[15] Limit analysis of a soil reinforced by micropile group: a decomposition approach, Limit State of Materials and Structures, Springer, 2013, pp. 179-195
[16] Large problems in numerical limit analysis: a decomposition approach, Limit States of Materials and Structures, Springer, 2009, pp. 23-43
[17] Optimal shape design as a material distribution problem, Struct. Optim., Volume 1 (1989) no. 4, pp. 193-202
[18] Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., Volume 71 (1988) no. 2, pp. 197-224
[19] Generalized shape optimization without homogenization, Struct. Optim., Volume 4 (1992) no. 3–4, pp. 250-252
[20] Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., Volume 16 (1998) no. 1, pp. 68-75
[21] Stress constrained topology optimization, Struct. Multidiscip. Optim., Volume 48 (2013) no. 1, pp. 33-47
[22] Material interpolation schemes in topology optimization, Arch. Appl. Mech., Volume 69 (1999) no. 9–10, pp. 635-654
[23] Large static problem in numerical limit analysis: a decomposition approach, Int. J. Numer. Anal. Methods Geomech., Volume 34 (2010), pp. 1960-1980
[24] Structural design using optimality based cellular automata, Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002
[25] A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Eng., Volume 93 (1991) no. 3, pp. 291-318
Cité par Sources :
Commentaires - Politique