Comptes Rendus
Solid body motion prediction using a unit quaternion-based solver with actuator disk
Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1136-1152.

A six-Dof motion solver based on unit quaternions and an actuator disk model are implemented for ship hydrodynamics predictions. The six-Dof module is tested using the water entry phenomenon of a free falling sphere. The displacement history and impacting forces are analyzed. A KCS (KRISO container ship) model with the allowances of sinkage and trim is then simulated and validated. The actuator disk model is used to replace a real propeller. The open-water test of a KP458 propeller is first carried out to obtain the thrust and torque coefficients, using both the multi-run and single-run approaches. Oblique Towing Tank (OTT) tests using the actuator disk are conducted at last and the results agree well with the experiments. These models can be used for simulating six-Dof motions and captive model tests of ships.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.08.010
Mots clés : Ship hydrodynamics, Actuator disk, Open-water test, Oblique towing tank test
Peng Du 1 ; Abdellatif Ouahsine 1 ; Yannick Hoarau 2

1 Laboratoire Roberval, UMR CNRS, Sorbonne Universités, Université de technologie de Compiègne, Centre de recherches Royallieu, CS 60319, 60203 Compiègne cedex, France
2 ICUBE Laboratory, UMR 7357 CNRS, University of Strasbourg, 67000 Strasbourg, France
@article{CRMECA_2018__346_12_1136_0,
     author = {Peng Du and Abdellatif Ouahsine and Yannick Hoarau},
     title = {Solid body motion prediction using a unit quaternion-based solver with actuator disk},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1136--1152},
     publisher = {Elsevier},
     volume = {346},
     number = {12},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.010},
     language = {en},
}
TY  - JOUR
AU  - Peng Du
AU  - Abdellatif Ouahsine
AU  - Yannick Hoarau
TI  - Solid body motion prediction using a unit quaternion-based solver with actuator disk
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1136
EP  - 1152
VL  - 346
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.010
LA  - en
ID  - CRMECA_2018__346_12_1136_0
ER  - 
%0 Journal Article
%A Peng Du
%A Abdellatif Ouahsine
%A Yannick Hoarau
%T Solid body motion prediction using a unit quaternion-based solver with actuator disk
%J Comptes Rendus. Mécanique
%D 2018
%P 1136-1152
%V 346
%N 12
%I Elsevier
%R 10.1016/j.crme.2018.08.010
%G en
%F CRMECA_2018__346_12_1136_0
Peng Du; Abdellatif Ouahsine; Yannick Hoarau. Solid body motion prediction using a unit quaternion-based solver with actuator disk. Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1136-1152. doi : 10.1016/j.crme.2018.08.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.010/

[1] P.M. Carrica; R.V. Wilson; R.W. Noack; F. Stern Ship motions using single-phase level set with dynamic overset grids, Comput. Fluids, Volume 36 (2007) no. 9, pp. 1415-1433

[2] P. Du; A. Ouahsine; K. Toan; P. Sergent Simulation of ship maneuvering in a confined waterway using a nonlinear model based on optimization techniques, Ocean Eng., Volume 142 (2017), pp. 194-203

[3] P. Du; A. Ouahsine; P. Sergent Influences of the separation distance, ship speed and channel dimension on ship maneuverability in a confined waterway, C. R. Mecanique, Volume 346 (2018) no. 5, pp. 390-401

[4] Z. Shen; D. Wan; P.M. Carrica Dynamic overset grids in openfoam with application to kcs self-propulsion and maneuvering, Ocean Eng., Volume 108 (2015), pp. 287-306

[5] V. Vukčević; H. Jasak; I. Gatin Implementation of the ghost fluid method for free surface flows in polyhedral finite volume framework, Comput. Fluids, Volume 153 (2017), pp. 1-19

[6] T.I. Fossen Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, 2011

[7] A. Dullweber; B. Leimkuhler; R. McLachlan Symplectic splitting methods for rigid body molecular dynamics, J. Chem. Phys., Volume 107 (1997) no. 15, pp. 5840-5851

[8] R. Miller The aerodynamics and dynamic analysis of horizontal axis wind turbines, Wind Engineering 1983, Part 3C, Elsevier, 1984, pp. 329-340

[9] G.J.W. Van Bussel The Aerodynamics of Horizontal Axis Wind Turbine Rotors Explored with Asymptotic Expansion Methods, Delft University of Technology, Delft, The Netherlands, 1995 (Ph.D. thesis)

[10] J.T. Conway Analytical solutions for the actuator disk with variable radial distribution of load, J. Fluid Mech., Volume 297 (1995), pp. 327-355

[11] J.N. Sørensen; A. Myken Unsteady actuator disc model for horizontal axis wind turbines, J. Wind Eng. Ind. Aerodyn., Volume 39 (1992), pp. 139-149

[12] F. Stern; H. Kim; V. Patel A viscous-flow approach to the computation of propeller–hull interaction, J. Ship Res., Volume 32 (1988) no. 4, pp. 246-262

[13] P. Du; A. Ouahsine; P. Sergent Hydrodynamics prediction of a ship in static and dynamic states, Coupled Syst. Mech., Volume 7 (2018) no. 2, pp. 163-176

[14] ITTC Recommended procedures and guidelines: uncertainty analysis in CFD verification and validation methodology and procedures, Fukuoka, Japan, 14–20 September (2008)

[15] T. Hino Proceedings of CFD Workshop, Tokyo, Japan, 2005, 2005

[16] F. Pereira; L. Eça; G. Vaz Verification and validation exercises for the flow around the kvlcc2 tanker at model and full-scale Reynolds numbers, Ocean Eng., Volume 129 (2017), pp. 133-148

[17] W. Kim; S. Van; D. Kim Measurement of flows around modern commercial ship models, Exp. Fluids, Volume 31 (2001) no. 5, pp. 567-578

[18] Z. Shen; D. Wan et al. Numerical simulation of sphere water entry problem based on VOF and dynamic mesh methods, The Twenty-First International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 2011

[19] L. Larsson; F. Stern; M. Visonneau Numerical Ship Hydrodynamics: An Assessment of the Gothenburg 2010 Workshop, Springer, 2013

[20] T. Xing; P. Carrica; F. Stern Computational towing tank procedures for single run curves of resistance and propulsion, J. Fluids Eng., Volume 130 (2008) no. 10

[21] P.M. Carrica; A.M. Castro; F. Stern Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids, J. Mar. Sci. Technol., Volume 15 (2010) no. 4, pp. 316-330

[22] H. Yasukawa; Y. Yoshimura Introduction of mmg standard method for ship maneuvering predictions, J. Mar. Sci. Technol., Volume 20 (2015) no. 1, pp. 37-52

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Computational fluid dynamics for naval hydrodynamics

Michel Visonneau; Ganbo Deng; Emmanuel Guilmineau; ...

C. R. Méca (2022)


Influences of the separation distance, ship speed and channel dimension on ship maneuverability in a confined waterway

Peng Du; Abdellatif Ouahsine; Philippe Sergent

C. R. Méca (2018)


An advanced design method for propellers behind bodies of revolution

Noureddine Settou; Benjamin Viney

C. R. Méca (2003)