Comptes Rendus
A class of fast diffusion p-Laplace equation with arbitrarily high initial energy
Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1153-1158.

In this paper, the authors investigate a class of fast-diffusion p-Laplace equation, which was considered by Li, Han and Li (2016) [1], where, among other things, blow-up in finite time of solutions was proved for positive but suitably small initial energy. Their results will be complemented in this paper in the sense that the existence of finite time blow-up solutions for arbitrarily high initial energy will be proved. Moreover, an abstract criterion for the existence of global solutions that vanish at infinity will also be provided for high initial energy.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.06.013
Keywords: Fast diffusion, p-Laplace, High initial energy, Global existence, Blow up

Yuzhu Han 1

1 School of Mathematics, Jilin University, Changchun 130012, PR China
@article{CRMECA_2018__346_12_1153_0,
     author = {Yuzhu Han},
     title = {A class of fast diffusion {\protect\emph{p}-Laplace} equation with arbitrarily high initial energy},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1153--1158},
     publisher = {Elsevier},
     volume = {346},
     number = {12},
     year = {2018},
     doi = {10.1016/j.crme.2018.06.013},
     language = {en},
}
TY  - JOUR
AU  - Yuzhu Han
TI  - A class of fast diffusion p-Laplace equation with arbitrarily high initial energy
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1153
EP  - 1158
VL  - 346
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2018.06.013
LA  - en
ID  - CRMECA_2018__346_12_1153_0
ER  - 
%0 Journal Article
%A Yuzhu Han
%T A class of fast diffusion p-Laplace equation with arbitrarily high initial energy
%J Comptes Rendus. Mécanique
%D 2018
%P 1153-1158
%V 346
%N 12
%I Elsevier
%R 10.1016/j.crme.2018.06.013
%G en
%F CRMECA_2018__346_12_1153_0
Yuzhu Han. A class of fast diffusion p-Laplace equation with arbitrarily high initial energy. Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1153-1158. doi : 10.1016/j.crme.2018.06.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.06.013/

[1] J. Li; Y. Han; H. Li Blow-up and extinction of solutions to a fast diffusion equation with homogeneous Neumann boundary condition, Electron. J. Differ. Equ., Volume 236 (2016), pp. 1-10

[2] W. Gao; Y. Han Blow-up of a nonlocal semilinear parabolic equation with positive initial energy, Appl. Math. Lett., Volume 24 (2011) no. 5, pp. 784-788

[3] B. Guo; W. Gao Non-extinction of solutions to a fast diffusive p-Laplace equation with Neumann boundary conditions, J. Math. Appl. Anal., Volume 422 (2015), pp. 1527-1531

[4] B. Hu; H. Yin Semilinear parabolic equations with prescribed energy, Rend. Circ. Mat. Palermo, Volume 44 (1995), pp. 479-505

[5] M. Jazar; R. Kiwan Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 215-218

[6] A. Khelghati; K. Baghaei Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy, Comput. Math. Appl., Volume 70 (2015), pp. 896-902

[7] Q. Li; W. Gao; Y. Han Global existence blow up and extinction for a class of thin-film equation, Nonlinear Anal., Volume 147 (2016), pp. 96-109

[8] M. Liao; W. Gao Blow-up phenomena for a nonlocal p-Laplace equation with Neumann boundary conditions, Arch. Math., Volume 108 (2017) no. 3, pp. 313-324

[9] C. Qu; X. Bai; S. Zheng Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions, J. Math. Appl. Anal., Volume 412 (2014), pp. 326-333

[10] C.Y. Qu; W.S. Zhou Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., Volume 436 (2016) no. 2, pp. 796-809

[11] A. El Soufi; M. Jazar; R. Monneau A gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007) no. 1, pp. 17-39

[12] J. Zhou Blow-up for a thin-film equation with positive initial energy, J. Math. Anal. Appl., Volume 446 (2017), pp. 1133-1138

[13] H.A. Levine Some nonexistence and instability theorems for solutions of formally parabolic equation of the form Put=Au+Fu, Arch. Ration. Mech. Anal., Volume 51 (1973), pp. 371-386

[14] D.H. Sattinger On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., Volume 30 (1968) no. 2, pp. 148-172

[15] H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010

[16] F. Gazzola; T. Weth Finite time blow up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integral Equ., Volume 18 (2005), pp. 961-990

[17] R.Z. Xu; J. Su Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., Volume 264 (2013), pp. 2732-2763

Cited by Sources:

The author is supported by NSFC (11401252) and by Science and Technology Development Project of Jilin Province (20160520103JH).

Comments - Policy