Comptes Rendus
Effect of particle shape on micro- and mesostructure evolution of granular assemblies under biaxial loading conditions
Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1233-1252.

Discrete element method (DEM) numerical biaxial tests on samples with different particle shapes are performed to investigate how the multiscale evolves with varying particle shape. The samples used in such simulations are composed of circular, square, and elongated particles, respectively. For the numerical results, analyses are conducted in terms of microscopic evolution, i.e. particle rotation and evolution of fabric, and mesoscopic evolution, i.e. the evolution of loops and improved clustering coefficient. At the microscale, the mean particle rotation of circular particles is remarkably larger than those of square and elongated particles, and the shear band localization phenomenon is more obvious when the aspect ratio (AR) decreases. Considering the fabric evolving with particle shape, the value of anisotropy gradually increases when particle shape becomes irregular, and contacts of circular particles are pronouncedly less than those of irregular particles from the coordination number and curves of degree distribution. At the mesoscale, when the particle relationship is considered, the isotropic particles (i.e. circular and square particles) have similar evolutions of loops and modified clustering coefficient, whereas the elongated particles have remarkable three loops and modified clustering coefficient, which are both larger than those of isotropic particles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.08.013
Keywords: Particle shape, Biaxial simulation, Particle rotation, Fabric evolution, Loops evolution, Modified clustering coefficient, Complex network

Jianqiu Tian 1; Enlong Liu 1, 2

1 State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
2 Northwest Institute of Eco-Environment and Resources, State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
@article{CRMECA_2018__346_12_1233_0,
     author = {Jianqiu Tian and Enlong Liu},
     title = {Effect of particle shape on micro- and mesostructure evolution of granular assemblies under biaxial loading conditions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1233--1252},
     publisher = {Elsevier},
     volume = {346},
     number = {12},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.013},
     language = {en},
}
TY  - JOUR
AU  - Jianqiu Tian
AU  - Enlong Liu
TI  - Effect of particle shape on micro- and mesostructure evolution of granular assemblies under biaxial loading conditions
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1233
EP  - 1252
VL  - 346
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.013
LA  - en
ID  - CRMECA_2018__346_12_1233_0
ER  - 
%0 Journal Article
%A Jianqiu Tian
%A Enlong Liu
%T Effect of particle shape on micro- and mesostructure evolution of granular assemblies under biaxial loading conditions
%J Comptes Rendus. Mécanique
%D 2018
%P 1233-1252
%V 346
%N 12
%I Elsevier
%R 10.1016/j.crme.2018.08.013
%G en
%F CRMECA_2018__346_12_1233_0
Jianqiu Tian; Enlong Liu. Effect of particle shape on micro- and mesostructure evolution of granular assemblies under biaxial loading conditions. Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1233-1252. doi : 10.1016/j.crme.2018.08.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.013/

[1] R.C. Hidalgo; I. Zuriguel; D. Maza; I. Pagonabarraga Role of particle shape on the stress propagation in granular packings, Phys. Rev. Lett., Volume 103 (2009)

[2] C. Nouguier-Lehon Effect of the grain elongation on the behaviour of granular materials in biaxial compression, C. R. Mecanique, Volume 338 (2010), pp. 587-595

[3] D.-H. Nguyen; E. Azéma; F. Radjai; P. Sornay Effect of size polydispersity versus particle shape in dense granular media, Phys. Rev. E, Volume 90 (2014)

[4] Y. Yang; J.F. Wang; Y.M. Cheng Quantified evaluation of particle shape effects from micro-to-macro scales for non-convex grains, Particuology, Volume 25 (2016), pp. 23-35

[5] S. Zhao; N. Zhang; X. Zhou; L. Zhang Particle shape effects on fabric of granular random packing, Powder Technol., Volume 320 (2017), pp. 175-186

[6] K. Shinohara; M. Oida; B. Golman Effect of particle shape on angle of internal friction by triaxial compression test, Powder Technol., Volume 107 (2000), pp. 131-136

[7] B. Sukumaran; A.K. Ashmawy Quantitative characterisation of the geometry of discrete particles, Géotechnique, Volume 51 (2001), pp. 619-627

[8] G.C. Cho; J. Dodds; J.C. Santamarina Particle shape effects on packing density, stiffness, and strength: natural and crushed sands, J. Geotech. Geoenviron., Volume 132 (2006), pp. 591-602

[9] J. Yang; L.M. Wei Collapse of loose sand with the addition of fines: the role of particle shape, Géotechnique, Volume 62 (2012), pp. 1111-1125

[10] J. Yang; X.D. Luo Exploring the relationship between critical state and particle shape for granular materials, J. Mech. Phys. Solids, Volume 84 (2015), pp. 196-213

[11] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979), pp. 47-65

[12] D.-H. Nguyen; E. Azéma; P. Sornay; F. Radjai Effects of shape and size polydispersity on strength properties of granular materials, Phys. Rev. E, Volume 91 (2015)

[13] J.P. de Bono; G.R. McDowell Investigating the effects of particle shape on normal compression and overconsolidation using DEM, Granul. Matter, Volume 18 (2016), p. 55

[14] D. Höhner; S. Wirtz; V. Scherer A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method, Powder Technol., Volume 253 (2014), pp. 256-265

[15] R. Maione; S.K.D. Richter; G. Mauviel; G. Wild DEM investigation of granular flow and binary mixture segregation in a rotating tumbler: influence of particle shape and internal baffles, Powder Technol., Volume 286 (2015), pp. 732-739

[16] L. Tong; Y.H. Wang DEM simulations of shear modulus and damping ratio of sand with emphasis on the effects of particle number, particle shape, and aging, Acta Geotech., Volume 10 (2015), pp. 117-130

[17] J. Tian; E. Liu; L. Jiang; X. Jiang; Y. Sun; R. Xu Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, C. R. Mecanique, Volume 346 (2018), pp. 460-476

[18] W.M. Yan Fabric evolution in a numerical direct shear test, Comput. Geotech., Volume 36 (2009), pp. 597-603

[19] R. Wang; P. Fu; J.M. Zhang; Y.F. Dafalias Evolution of various fabric tensors for granular media toward the critical state, J. Eng. Mech., Volume 143 (2017)

[20] M.J. Jiang; H.B. Yan; H.H. Zhu; S. Utili Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses, Comput. Geotech., Volume 38 (2011), pp. 14-29

[21] N. Estrada; E. Azéma; F. Radjai; A. Taboada Identification of rolling resistance as a shape parameter in sheared granular media, Phys. Rev. E, Volume 84 (2011)

[22] W. Zhou; J. Liu; G. Ma; W. Yuan; X. Chang Macroscopic and microscopic behaviors of granular materials under proportional strain path: a DEM study, Int. J. Numer. Anal. Methods Geomech., Volume 40 (2016), pp. 2450-2467

[23] R.A. Hosn; L. Sibille; N. Benahmed; B. Chareyre Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction, Granul. Matter, Volume 19 (2017), p. 4 | DOI

[24] A. Tordesillas; D.M. Walker; Q. Lin Force cycles and force chains, Phys. Rev. E, Volume 81 (2010)

[25] H. Zhu; F. Nicot; F. Darve Meso-structure evolution in a 2D granular materials during biaxial loading, Granul. Matter, Volume 18 (2016), p. 3

[26] H. Zhu; F. Nicot; F. Darve Meso-structure organization in two-dimensional granular materials along biaxial loading path, Int. J. Solids Struct., Volume 96 (2016), pp. 25-37

[27] L. Papadopoulos; M.A. Porter; K.E. Daniels; D.S. Bassett Network analysis of particles and grains, J. Complex Networks, Volume 6 (2018) no. 4, pp. 485-565 | DOI

[28] D.M. Walker; A. Tordesillas Topological evolution in dense granular materials: a complex networks perspective, Int. J. Solids Struct., Volume 47 (2010), pp. 624-639

[29] A. Tordesillas; P. O'Sullivan; D.M. Walker Paramitha Evolution of functional connectivity in contact and force chain networks: feature vectors, k-cores and minimal cycles, C. R. Mecanique, Volume 338 (2010), pp. 556-569

[30] F. Altuhafi; C. O'Sullivan; I. Cavarretta Analysis of an image-based method to quantify the size and shape of sand particles, J. Geotech. Geoenviron. Eng., Volume 139 (2013), pp. 1290-1307

[31] S. Sheng; Y. Dou; X. Tao; S. Zhu; B. Xu; Q. Li; X. Guo; X. He Specification of Soil Test, SL237–1999 ed., China Water and Power Press, Beijing, 1999

[32] GDR-MiDi On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), pp. 341-365

[33] F. Radjai Force and fabric states in granular media, AIP Conf. Proc., Volume 1145 (2009), pp. 35-42

[34] F. Alonso-Marroquin; H.B. Muhlhaus; H.J. Herrmann Micromechanical investigation of soil plasticity using a discrete model of polygonal particles, Theor. Appl. Mech., Volume 35 (2008), pp. 11-28

[35] Z. Bi; Q. Sun; F. Jin; M. Zhang Numerical study on energy transformation in granular matter under biaxial compression, Granul. Matter, Volume 13 (2011), pp. 503-510

[36] N.A. Hama; T. Ouahbi; S. Taibi; H. Souli; J.-M. Fleureau; A. Pantet Analysis of mechanical behaviour and internal stability of granular materials using discrete element method, Int. J. Numer. Anal. Methods Geomech., Volume 40 (2016), pp. 1712-1729

[37] K. Iwashita; M. Oda Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technol., Volume 109 (2000), pp. 192-205

[38] C. O'Sullivan; J.D. Bray; S. Li A new approach for calculating strain for particulate media, Int. J. Numer. Anal. Methods Geomech., Volume 27 (2003), pp. 859-877

[39] D. Vågberg; P. Olsson; S. Teitel Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks, Phys. Rev. E, Volume 95 (2017)

[40] M. Oda; H. Kazama Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Géotechnique, Volume 48 (1998), pp. 465-481

[41] L. Rothenburg; R.J. Bathurst Analytical study of induced anisotropy in idealized granular materials, Géotechnique, Volume 39 (1989), pp. 601-614

[42] N.P. Kruyt Micromechanical study of fabric evolution in quasi-static deformation of granular materials, Mech. Mater., Volume 44 (2012), pp. 120-129

[43] R. Bond Complex networks: network healing after loss, Nat. Hum. Behav., Volume 1 (2017), p. 87

[44] J. Gao; B. Barzel; A.L. Barabási Universal resilience patterns in complex networks, Nature, Volume 530 (2016), pp. 307-312

[45] P. Cao; E. Liu; L. Jiang Evolution of the mesoscopic parameters and mechanical properties of granular materials upon loading, Math. Probl. Eng. (2017) | DOI

[46] L. Jiang; E. Liu; J. Tian; X. Jiang Effects of Inter-particle frictional coefficients on evolution of contact networks in landslide process, Engineering, Volume 9 (2017), pp. 917-936

[47] A. Smart; J.M. Ottino Granular matter and networks: three related examples, Soft Matter, Volume 4 (2008), pp. 2125-2131

[48] A.G. Smart; J.M. Ottino Evolving loop structure in gradually tilted two-dimensional granular packings, Phys. Rev. E, Volume 77 (2008)

[49] D.J. Watts; S.H. Strogatz Collective dynamics of ‘small-world’ networks, Nature, Volume 393 (1998), pp. 440-442

[50] L. da; F. Costa; F.A. Rodrigues; G. Travieso; P.R. Villas Boas Characterization of complex networks: a survey of measurements, Adv. Phys., Volume 56 (2007), pp. 167-242

Cited by Sources:

Comments - Policy