[Localisation de la déformation dans les milieux granulaires]
Cet article est une introduction à la physique de la localisation de la déformation dans les milieux granulaires. Il présente les caractéristiques essentielles du phénomène d'émergence et de développement de structures de déformation localisée, qu'on appelle généralement des bandes de cisaillement. Il s'appuie sur l'observation expérimentale de champs de déformation dans des essais mécaniques de laboratoire, à deux échelles d'observation : l'une, macroscopique, à laquelle le milieu granulaire est observé comme un milieu continu, et l'autre, qu'on qualifiera de microscopique sans notion d'unités de mesure, à l'échelle du grain. À l'échelle macroscopique, l'observation continue quantitative par des techniques photogrammétriques révèle l'apparition du phénomène et son développement sous forme de structures à l'échelle de l'échantillon. Même à cette échelle, la taille caractéristique des phénomènes observés se révèle être de quelques grains. À l'échelle microscopique, un suivi exhaustif en 3D de tous les grains d'échantillon de sables soumis au même type d'essais peut désormais être réalisé en utilisant la microtomographie à rayons X, et c'est l'objet de la seconde partie de cet article. Le lien entre l'angularité des grains et leur rotation dans les bandes est montré, ce qui permet d'avancer des explication microscopiques à diverses observations macroscopiques qui ignorent l'aspect discret du milieu. Incidemment, des phénomènes rarement décrits – qui paraissent être des précurseurs de localisation apparaissant bien avant le pic – sont observés et commentés.
This paper discusses strain localisation in granular media by presenting experimental, full-field analysis of mechanical tests on sand, both at a continuum level, as well as at the grain scale. At the continuum level, the development of structures of localised strain can be studied. Even at this scale, the characteristic size of the phenomena observed is in the order of a few grains. In the second part of this paper, therefore, the development of shear bands within specimen of different sands is studied at the level of the individual grains, measuring grains kinematics with x-ray tomography. The link between grain angularity and grain rotation within shear bands is shown, allowing a grain-scale explanation of the difference in macroscopic residual stresses for materials with different grain shapes. Finally, rarely described precursors of localisation, emerging well before the stress peak are observed and commented.
Mots-clés : Localisation de la déformation, Matériaux granulaires, Essais biaxiaux et triaxiaux, Tomographie à rayons X, Mesures de champs, Précurseurs de localisation
Jacques Desrues 1, 2 ; Edward Andò 1, 2
@article{CRPHYS_2015__16_1_26_0, author = {Jacques Desrues and Edward And\`o}, title = {Strain localisation in granular media}, journal = {Comptes Rendus. Physique}, pages = {26--36}, publisher = {Elsevier}, volume = {16}, number = {1}, year = {2015}, doi = {10.1016/j.crhy.2015.01.001}, language = {en}, }
Jacques Desrues; Edward Andò. Strain localisation in granular media. Comptes Rendus. Physique, Granular physics / Physique des milieux granulaires, Volume 16 (2015) no. 1, pp. 26-36. doi : 10.1016/j.crhy.2015.01.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.01.001/
[1] The influence of strains in soil mechanics, Geotechnique, Volume 20 (1970) no. 2, pp. 129-170
[2] Formation of shear bands in sand bodies as a bifurcation problem, Int. J. Numer. Anal. Methods Geomech., Volume 2 (1978) no. 2, pp. 99-128
[3] Strength and deformation characteristics of saturated sand at extremely low pressures, Soil Found., Volume 24 (1984) no. 4, pp. 30-48
[4] Localization of the deformation in tests on sand sample, Eng. Fract. Mech., Volume 21 (1985) no. 4, pp. 909-921
[5] Naissance des bandes de cisaillement dans les milieux granulaires: expérience et théorie, Manuel de rhéologie des geomateriaux, 1985, pp. 279-298
[6] Use of stereophotogrammetry to analyze the development of shear bands in sand, ASTM Geotech. Test. J., Volume 18 (1995) no. 4, pp. 405-420
[7] Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand, Mech. Cohes.-Frict. Mater., Volume 4 (1999) no. 4, pp. 419-441
[8] Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell, Int. J. Rock Mech. Min. Sci., Volume 37 (2000) no. 8, pp. 1223-1237
[9] Compacting and dilating shear bands in porous rock: theoretical and experimental conditions, J. Geophys. Res., Solid Earth, Volume 106 (2001) no. B7, pp. 13435-13442
[10] Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry, Int. J. Numer. Anal. Methods Geomech., Volume 28 (2004) no. 4, pp. 279-321
[11] Microstructure in shear band observed by microfocus X-ray computed tomography, Geotechnique, Volume 54 (2004) no. 8, pp. 539-542
[12] Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l'architecture, De l'Imprimerie Royale, 1776
[13] Mesure du champ de déformation d'un objet plan par la méthode stéréophotogrammétrique de faux relief, J. Méc. Théor. Appl., Volume 3 (1984) no. 1, pp. 79-103
[14] Stereophotogrammetry and localization in concrete under compression, J. Eng. Mech., Volume 117 (1991) no. 7, pp. 1455-1465
[15] Triaxial testing of granular soil under elevated cell pressure, ASTM Special Technical Publication, vol. 977, 1988, pp. 290-310
[16] Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Geotechnique, Volume 46 (1996) no. 3, pp. 529-546
[17] Tracking strain localization in geomaterials using computerized tomography, X-Ray CT for Geomaterials, 2004, pp. 15-41
[18] Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone, Tectonophysics, Volume 267 (1996) no. 1, pp. 209-228
[19] Localization: shear bands and compaction bands, Int. Geophys., Volume 89 (2004), pp. 219-322
[20] 1γ2ε': a new shear apparatus to study the behavior of granular materials, ASTM Geotech. Test. J., Volume 15 (1992) no. 2, pp. 129-137
[21] Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path, Mech. Cohes.-Frict. Mater., Volume 2 (1997), pp. 121-163
[22] Statistical properties of granular materials near jamming, J. Stat. Mech. Theory Exp., Volume 2014 (2014) no. 6, p. P06004 http://stacks.iop.org/1742-5468/2014/i=6/a=P06004
[23] Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach, Acta Geotech., Volume 7 (2012) no. 1, pp. 1-13
[24] Experimental micromechanics: grain-scale observation of sand deformation, Géotech. Lett., Volume 2 (2012) no. 3, pp. 107-112
[25] Estimation of separating planes between touching 3D objects using power watershed, Mathematical Morphology and Its Applications to Signal and Image Processing, Springer, 2013, pp. 452-463
[26] Characterization of the early strain localization in a sandstone and a clay rock, IWBDG 2014, Hong-Kong, May 28–30, 2014 (2014) (oral communication)
[27] Localised deformation patterning in 2D granular materials revealed by digital image correlation, Granul. Matter, Volume 12 (2010) no. 1, pp. 1-14
[28] A biaxial apparatus for the study of heterogeneous and intermittent strains in granular materials, Granul. Matter, Volume 16 (2014) no. 1, pp. 1-8 | DOI
[29] Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges, Géotech. Lett., Volume 3 (2013), pp. 142-146
- Frequency dependence of acoustic emission with particle interaction and failure process in dry sands during triaxial compression, Géotechnique, Volume 75 (2025) no. 1, p. 1 | DOI:10.1680/jgeot.22.00407
- Experimental Study on Rock Deformation Localization Using Digital Image Correlation and Acoustic Emission, Applied Sciences, Volume 14 (2024) no. 12, p. 5355 | DOI:10.3390/app14125355
- Stress–Dilatancy Behavior of Alluvial Sands, Applied Sciences, Volume 14 (2024) no. 14, p. 6228 | DOI:10.3390/app14146228
- An implicit Material Point Method for micropolar solids undergoing large deformations, Computer Methods in Applied Mechanics and Engineering, Volume 419 (2024), p. 116668 | DOI:10.1016/j.cma.2023.116668
- An inclusion model for predicting granular elasticity incorporating force chain mechanics, Granular Matter, Volume 26 (2024) no. 2 | DOI:10.1007/s10035-024-01411-9
- Configurational mechanics in granular media, Granular Matter, Volume 26 (2024) no. 3 | DOI:10.1007/s10035-024-01443-1
- Effect of cementation on the mechanical response of sands using acoustic emission technique, Géotechnique (2024), p. 1 | DOI:10.1680/jgeot.23.00053
- Variability and loss of uniqueness of numerical solutions in FEM×DEM modeling with second gradient enhancement, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 48 (2024) no. 9, p. 2381 | DOI:10.1002/nag.3737
- Energy processes and phase transition in granular assemblies, International Journal of Solids and Structures, Volume 289 (2024), p. 112634 | DOI:10.1016/j.ijsolstr.2023.112634
- Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable, Journal of Rock Mechanics and Geotechnical Engineering, Volume 16 (2024) no. 6, p. 2198 | DOI:10.1016/j.jrmge.2024.02.003
- Theoretical and experimental study of strain localization phenomenon based on phase transition theory, Physics of Fluids, Volume 36 (2024) no. 5 | DOI:10.1063/5.0207063
- The role of mineralogical and textural complexity in the damage evolution of brittle rocks, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-79940-9
- Advanced analysis of the bias-extension of woven fabrics with X-ray microtomography and Digital Volume Correlation, Composites Part A: Applied Science and Manufacturing, Volume 175 (2023), p. 107748 | DOI:10.1016/j.compositesa.2023.107748
- Stick‐Slip Nucleation and Failure in Uniform Glass Beads Detected by Acoustic Emissions in Ring‐Shear Experiments: Implications for Identifying the Acoustic Emissions of Earthquake Foreshocks, Journal of Geophysical Research: Solid Earth, Volume 128 (2023) no. 8 | DOI:10.1029/2023jb026612
- Effect of Relative Density and Particle Morphology on the Bearing Capacity and Collapse Mechanism of Strip Footings in Sand, Journal of Geotechnical and Geoenvironmental Engineering, Volume 149 (2023) no. 8 | DOI:10.1061/jggefk.gteng-11324
- Capability of discrete element method to investigate the macro-micro mechanical behaviours of granular soils considering different stress conditions and morphological gene mutation, Journal of Rock Mechanics and Geotechnical Engineering, Volume 15 (2023) no. 10, p. 2731 | DOI:10.1016/j.jrmge.2022.11.015
- Fault rupture propagation in soil with intercalation using nonlocal model and softening modulus modification, Journal of Rock Mechanics and Geotechnical Engineering, Volume 15 (2023) no. 11, p. 2973 | DOI:10.1016/j.jrmge.2023.06.003
- Shear banding as a dissipative structure from a thermodynamic viewpoint, Journal of the Mechanics and Physics of Solids, Volume 179 (2023), p. 105394 | DOI:10.1016/j.jmps.2023.105394
- A phase field model for partially saturated geomaterials describing fluid–fluid displacements. Part I: The model and one-dimensional analysis, Advances in Water Resources, Volume 164 (2022), p. 104170 | DOI:10.1016/j.advwatres.2022.104170
- Assessment of Spatio-Temporal Kinematic Phenomena Observed along the Boundary of Triaxial Sand Specimens, Applied Sciences, Volume 12 (2022) no. 16, p. 8091 | DOI:10.3390/app12168091
- Data-driven strain–stress modelling of granular materials via temporal convolution neural network, Computers and Geotechnics, Volume 152 (2022), p. 105049 | DOI:10.1016/j.compgeo.2022.105049
- On the determination and evolution of fabric in representative elementary volumes for a sand specimen in triaxial compression, Granular Matter, Volume 24 (2022) no. 4 | DOI:10.1007/s10035-022-01262-2
- Brittle Creep and Failure: A Reformulation of the Wing Crack Model, Journal of Geophysical Research: Solid Earth, Volume 127 (2022) no. 9 | DOI:10.1029/2022jb024610
- Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials, Journal of Rock Mechanics and Geotechnical Engineering, Volume 14 (2022) no. 1, p. 240 | DOI:10.1016/j.jrmge.2021.09.015
- Global and Local Deformation Effects of Dry Vacuum-Consolidated Triaxial Compression Tests on Sand Specimens: Making a Database Available for the Calibration and Development of Forward Models, Materials, Volume 15 (2022) no. 4, p. 1528 | DOI:10.3390/ma15041528
- Stress levels of precursory strain localization subsequent to the crack damage threshold in brittle rock, PLOS ONE, Volume 17 (2022) no. 11, p. e0276214 | DOI:10.1371/journal.pone.0276214
- Visualization of non-uniform soil deformation during triaxial testing, Acta Geotechnica, Volume 16 (2021) no. 11, p. 3439 | DOI:10.1007/s11440-021-01310-w
- Study of shear behavior of granular materials by 3D DEM simulation of the triaxial test in the membrane boundary condition, Advanced Powder Technology, Volume 32 (2021) no. 4, p. 1145 | DOI:10.1016/j.apt.2021.02.018
- Deep Learning Predicts Stress–Strain Relations of Granular Materials Based on Triaxial Testing Data, Computer Modeling in Engineering Sciences, Volume 128 (2021) no. 1, p. 129 | DOI:10.32604/cmes.2021.016172
- Visualization of Localized Deformations of Sand in Drained Triaxial Compression Using Digital Image Correlation, Geotechnical Testing Journal, Volume 44 (2021) no. 3, p. 782 | DOI:10.1520/gtj20190096
- Influence of Particle-Scale Properties on Fracture Behavior of Silica Sand, International Journal of Geomechanics, Volume 21 (2021) no. 5 | DOI:10.1061/(asce)gm.1943-5622.0001986
- Influence of Friction and Particle Morphology on Triaxial Shearing of Granular Materials, Journal of Geotechnical and Geoenvironmental Engineering, Volume 147 (2021) no. 11 | DOI:10.1061/(asce)gt.1943-5606.0002634
- Displacements, Strains, and Shear Bands in Deep and Shallow Penetration Processes, Journal of Geotechnical and Geoenvironmental Engineering, Volume 147 (2021) no. 11 | DOI:10.1061/(asce)gt.1943-5606.0002631
- Micromechanical Behavior of Granular Soils Characterized by Acoustic Emission, Lithosphere, Volume 2021 (2021) no. Special 3 | DOI:10.2113/2021/4061808
- Triaxial Compression on Semi-solid Alloys, Metallurgical and Materials Transactions A, Volume 52 (2021) no. 5, p. 2010 | DOI:10.1007/s11661-021-06213-9
- Measuring the evolution of contact fabric in shear bands with X-ray tomography, Acta Geotechnica, Volume 15 (2020) no. 1, p. 79 | DOI:10.1007/s11440-019-00869-9
- DEM study of the shear behavior and formation of shear band in biaxial test, Advanced Powder Technology, Volume 31 (2020) no. 4, p. 1431 | DOI:10.1016/j.apt.2020.01.016
- Triaxial compression in sands using FDEM and micro-X-ray computed tomography, Computers and Geotechnics, Volume 124 (2020), p. 103638 | DOI:10.1016/j.compgeo.2020.103638
- Mechanical behaviour of low–medium density destructured White Chalk, Géotechnique Letters, Volume 10 (2020) no. 2, p. 360 | DOI:10.1680/jgele.20.00009
- From particle mechanics to micromorphic media. Part I: Homogenisation of discrete interactions towards stress quantities, International Journal of Solids and Structures, Volume 187 (2020), p. 23 | DOI:10.1016/j.ijsolstr.2018.08.013
- Shear Strength Envelopes of Biocemented Sands with Varying Particle Size and Cementation Level, Journal of Geotechnical and Geoenvironmental Engineering, Volume 146 (2020) no. 3 | DOI:10.1061/(asce)gt.1943-5606.0002201
- 3D Experimental Measurements of Evolution of Force Chains in Natural Silica Sand, Journal of Geotechnical and Geoenvironmental Engineering, Volume 146 (2020) no. 5 | DOI:10.1061/(asce)gt.1943-5606.0002241
- Acoustic emission behavior of granular soils with various ground conditions in drained triaxial compression tests, Soils and Foundations, Volume 60 (2020) no. 4, p. 929 | DOI:10.1016/j.sandf.2020.06.002
- X-Ray Tomography Experiments on Sand at Different Scales, Views on Microstructures in Granular Materials, Volume 44 (2020), p. 1 | DOI:10.1007/978-3-030-49267-0_1
- Phenomenological understanding of poroelasticity via the micromechanics of a simple digital-rock model, GEOPHYSICS, Volume 84 (2019) no. 4, p. WA161 | DOI:10.1190/geo2018-0577.1
- Advances in Geotechnical Sensors and Monitoring, Geotechnical Fundamentals for Addressing New World Challenges (2019), p. 29 | DOI:10.1007/978-3-030-06249-1_2
- Granular scale responses in the shear band region, Granular Matter, Volume 21 (2019) no. 4 | DOI:10.1007/s10035-019-0958-7
- A novel multiscale neutron-diffraction-based experimental approach for granular media, Géotechnique Letters, Volume 9 (2019) no. 4, p. 284 | DOI:10.1680/jgele.18.00234
- Simulation of localized compaction in Tuffeau de Maastricht based on evidence from X-ray tomography, International Journal of Rock Mechanics and Mining Sciences, Volume 121 (2019), p. 104039 | DOI:10.1016/j.ijrmms.2019.05.005
- Micro Shear Bands: Precursor for Strain Localization in Sheared Granular Materials, Journal of Geotechnical and Geoenvironmental Engineering, Volume 145 (2019) no. 2 | DOI:10.1061/(asce)gt.1943-5606.0001989
- Digital Volume Correlation: Review of Progress and Challenges, Experimental Mechanics, Volume 58 (2018) no. 5, p. 661 | DOI:10.1007/s11340-018-0390-7
- 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography, Granular Matter, Volume 20 (2018) no. 2 | DOI:10.1007/s10035-018-0798-x
- Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins, Granular Matter, Volume 20 (2018) no. 3 | DOI:10.1007/s10035-018-0809-y
- Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3D experimental kinematic measurements, Géotechnique, Volume 68 (2018) no. 2, p. 162 | DOI:10.1680/jgeot.16.p.148
- Hierarchical Multiscale Modeling of Strain Localization in Granular Materials: A Condensed Overview and Perspectives, Bifurcation and Degradation of Geomaterials with Engineering Applications (2017), p. 349 | DOI:10.1007/978-3-319-56397-8_44
- Thermomechanical properties and fracture of resin-bonded-sand cores – Experimental study and application in aluminium foundry, EPJ Web of Conferences, Volume 140 (2017), p. 08006 | DOI:10.1051/epjconf/201714008006
- Experimental study of shear bands formation in a granular material, EPJ Web of Conferences, Volume 140 (2017), p. 10001 | DOI:10.1051/epjconf/201714010001
- Mode I crack in particulate materials with rotational degrees of freedom, Engineering Fracture Mechanics, Volume 172 (2017), p. 181 | DOI:10.1016/j.engfracmech.2016.12.024
- Discrete Digital Projections Correlation: A Reconstruction-Free Method to Quantify Local Kinematics in Granular Media by X-ray Tomography, Experimental Mechanics, Volume 57 (2017) no. 6, p. 819 | DOI:10.1007/s11340-017-0263-5
- DEM modeling of shear bands in crushable and irregularly shaped granular materials, Granular Matter, Volume 19 (2017) no. 2 | DOI:10.1007/s10035-017-0712-y
- Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand, Journal of Geotechnical and Geoenvironmental Engineering, Volume 143 (2017) no. 2 | DOI:10.1061/(asce)gt.1943-5606.0001601
- Frictional behaviour of sandstone: A sample-size dependent triaxial investigation, Journal of Structural Geology, Volume 94 (2017), p. 154 | DOI:10.1016/j.jsg.2016.11.014
- Identification of the crushing behavior of brittle foam: From indentation to oedometric tests, Journal of the Mechanics and Physics of Solids, Volume 98 (2017), p. 181 | DOI:10.1016/j.jmps.2016.09.011
- Experimental study of shear band formation: Bifurcation and localization, EPL (Europhysics Letters), Volume 116 (2016) no. 2, p. 28007 | DOI:10.1209/0295-5075/116/28007
- Phase field modeling of partially saturated deformable porous media, Journal of the Mechanics and Physics of Solids, Volume 94 (2016), p. 230 | DOI:10.1016/j.jmps.2016.04.018
- Eshelby inclusions in granular matter: Theory and simulations, Physical Review E, Volume 94 (2016) no. 2 | DOI:10.1103/physreve.94.022907
- A study of the rheology of planar granular flow of dumbbells using discrete element method simulations, Physics of Fluids, Volume 28 (2016) no. 10 | DOI:10.1063/1.4963310
- Grain‐scale‐based simulation of granular material, PAMM, Volume 15 (2015) no. 1, p. 449 | DOI:10.1002/pamm.201510215
Cité par 68 documents. Sources : Crossref
Commentaires - Politique