This study presents a model to determine the aerodynamic forces on an irregularly shaped object for prediction of trajectories of debris. We classify the debris according to shape and use wind tunnel tests to create a database of aerodynamic forces of similarly sized objects. We have then validated the database results against wind tunnel measurements of aerodynamic coefficients of rock-like debris objects. Although the individual errors may be significant, the results show a generally good agreement with our model prediction and a small average error.
Accepté le :
Publié le :
Vincent Chai 1 ; Dushyant Parkhi 1 ; Sethu Boopathy 1 ; Junting Xiang 1, 2, 3 ; Jörg Schlüter 1, 2
@article{CRMECA_2019__347_1_19_0, author = {Vincent Chai and Dushyant Parkhi and Sethu Boopathy and Junting Xiang and J\"org Schl\"uter}, title = {A model for the aerodynamic coefficients of rock-like debris}, journal = {Comptes Rendus. M\'ecanique}, pages = {19--32}, publisher = {Elsevier}, volume = {347}, number = {1}, year = {2019}, doi = {10.1016/j.crme.2018.10.001}, language = {en}, }
TY - JOUR AU - Vincent Chai AU - Dushyant Parkhi AU - Sethu Boopathy AU - Junting Xiang AU - Jörg Schlüter TI - A model for the aerodynamic coefficients of rock-like debris JO - Comptes Rendus. Mécanique PY - 2019 SP - 19 EP - 32 VL - 347 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2018.10.001 LA - en ID - CRMECA_2019__347_1_19_0 ER -
%0 Journal Article %A Vincent Chai %A Dushyant Parkhi %A Sethu Boopathy %A Junting Xiang %A Jörg Schlüter %T A model for the aerodynamic coefficients of rock-like debris %J Comptes Rendus. Mécanique %D 2019 %P 19-32 %V 347 %N 1 %I Elsevier %R 10.1016/j.crme.2018.10.001 %G en %F CRMECA_2019__347_1_19_0
Vincent Chai; Dushyant Parkhi; Sethu Boopathy; Junting Xiang; Jörg Schlüter. A model for the aerodynamic coefficients of rock-like debris. Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 19-32. doi : 10.1016/j.crme.2018.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.10.001/
[1] et al. A review: numerical modeling of the debris throw of reinforced concrete structures under internal explosion, Portland, OR, USA (2010)
[2] Experimental analysis of a stochastic model for estimating wind-borne compact debris trajectory in turbulent winds, J. Fluids Struct., Volume 54 (2015), pp. 900-924
[3] Aerodynamics of a Rugby Ball, J. Appl. Mech., Volume 79 (2012) no. 2
[4] Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor, Aerosp. Sci. Technol., Volume 74 (2018), pp. 81-92
[5] Towards simulation of flapping wings using immersed boundary method, Int. J. Numer. Methods Fluids, Volume 71 (2013) no. 4, pp. 522-536
[6] On hairpin vortices induced by circular synthetic jets in laminar and turbulent boundary layers, Comput. Fluids, Volume 95 (2014), pp. 1-18
[7] Numerical study of guide vane effects on reacting flow characteristics in a trapped vortex combustor, Combust. Sci. Technol., Volume 190 (2018), pp. 2111-2133
[8] et al. Numerical simulation of flow behavior of liquid and particles in liquid–solid risers with multi scale interfacial drag method, Adv. Powder Technol., Volume 24 (2013) no. 2, pp. 537-548
[9] A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979) no. 1, pp. 47-65
[10] A numerical parametric and optimization study of an industrial air-slide conveyor system, Volume 315 (2017), pp. 367-378 (Powder Technology)
[11] Numerical investigations on a small-scale air-slide conveyor, J. Appl. Fluid Mech., Volume 12 (2019) no. 1
[12] et al. Transversal bed motion in rotating drums using spherical particles: comparison of experiments with DEM simulations, Volume 264 (2014) no. Supplement C, pp. 96-104 (Powder Technology)
[13] et al. Study of debris throw and dispersion after break-up of reinforced concrete structure under internal explosion, Portland, OR, USA (2010)
[14] Dispersion of windborne debris, J. Wind Eng. Ind. Aerodyn., Volume 104–106 (2012), pp. 594-602
[15] Blast impulse at very near distance, Propellants Explos. Pyrotech., Volume 33 (2008) no. 5, pp. 353-359
[16] A model of wind-borne debris damage, J. Wind Eng. Ind. Aerodyn., Volume 90 (2002) no. 4–5, pp. 555-565
[17] Trajectories of flat plates in uniform flow with application to wind-generated missiles, J. Wind Eng. Ind. Aerodyn., Volume 14 (1983) no. 1–3, pp. 443-453
[18] Investigations of plate-type windborne debris – part II: computed trajectories, J. Wind Eng. Ind. Aerodyn., Volume 94 (2006) no. 1, pp. 21-39
[19] Trajectories of spheres in strong winds with application to wind-borne debris, J. Wind Eng. Ind. Aerodyn., Volume 92 (2004), pp. 9-22
[20] The debris flight equations, J. Wind Eng. Ind. Aerodyn., Volume 95 (2007) no. 5, pp. 329-353
[21] Three-dimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment, J. Wind Eng. Ind. Aerodyn., Volume 102 (2012), pp. 22-35
[22] On the stochastic nature of compact debris flight, J. Wind Eng. Ind. Aerodyn., Volume 100 (2012) no. 1, pp. 77-90
[23] TRAJ – A Two Dimensional Trajectory Program for Personal Computer, Defense Technical Information Center, Fort Belvoir, VA, USA, 1990
[24] Ballistic Filtering for Improved Trajectory Calculations in the KG Software, 2010 (TNO report TNO-DV 2010 C071)
[25] The UK structural debris throw model, 31st DOD Explosive Safety Seminar, San Antonio Marriott Rivercenter, 2004
[26] et al. Break up Tests with Small “Ammunition Houses”, December 2006 (Kasun II, FOI-R–2202-SE. Forsvarsbygg Report 51/06. Technical report)
[27] et al. Towards the computational analysis of blast induced debris dynamics, International Symposium on Military Aspects of Blast and Shock (MABS21), 2010
[28] Boundary-Layer Theory, Springer, 2000
[29] Design and Analysis on Small Scale Fixed Pitch Straight Bladed Vertical Axis Wind Turbine (SB-VAWTs), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 2012 (PhD thesis)
[30] Separation of wind-tunnel background noise and wind noise from automobile interior measurements, Proc. 2nd Aeroacoustics Conference, State College, PA, USA, American Institute of Aeronautics and Astronautics, 1996
[31] Effects of background noises on nonlinear dynamics of a modelled thermoacoustic combustor, J. Acoust. Soc. Am., Volume 143 (2018) no. 1, pp. 60-70
[32] et al. Characterization of an aeroacoustic wind tunnel facility, Melbourne, November 16–19, 2014, Australian Acoustical Society (2014), pp. 16-19
[33] et al. Subsonic Wind Tunnel Wall Corrections, North Atlantic Treaty Organization, 1966
[34] Wall Interference in Wind Tunnels, North Atlantic Treaty Organization, 1983
Cité par Sources :
Commentaires - Politique