Comptes Rendus
A model for the aerodynamic coefficients of rock-like debris
Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 19-32.

This study presents a model to determine the aerodynamic forces on an irregularly shaped object for prediction of trajectories of debris. We classify the debris according to shape and use wind tunnel tests to create a database of aerodynamic forces of similarly sized objects. We have then validated the database results against wind tunnel measurements of aerodynamic coefficients of rock-like debris objects. Although the individual errors may be significant, the results show a generally good agreement with our model prediction and a small average error.

Published online:
DOI: 10.1016/j.crme.2018.10.001
Keywords: Wind-tunnel test, Aerodynamic coefficients, Rock-like debris, Model prediction, Debris trajectory

Vincent Chai 1; Dushyant Parkhi 1; Sethu Boopathy 1; Junting Xiang 1, 2, 3; Jörg Schlüter 1, 2

1 Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
2 Deakin University, School of Engineering, 75 Pigdons Road, VIC 3216, Australia
3 CSIRO Manufacturing, Private Bag 10, Clayton, VIC 3168, Australia
     author = {Vincent Chai and Dushyant Parkhi and Sethu Boopathy and Junting Xiang and J\"org Schl\"uter},
     title = {A model for the aerodynamic coefficients of rock-like debris},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {19--32},
     publisher = {Elsevier},
     volume = {347},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crme.2018.10.001},
     language = {en},
AU  - Vincent Chai
AU  - Dushyant Parkhi
AU  - Sethu Boopathy
AU  - Junting Xiang
AU  - Jörg Schlüter
TI  - A model for the aerodynamic coefficients of rock-like debris
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 19
EP  - 32
VL  - 347
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2018.10.001
LA  - en
ID  - CRMECA_2019__347_1_19_0
ER  - 
%0 Journal Article
%A Vincent Chai
%A Dushyant Parkhi
%A Sethu Boopathy
%A Junting Xiang
%A Jörg Schlüter
%T A model for the aerodynamic coefficients of rock-like debris
%J Comptes Rendus. Mécanique
%D 2019
%P 19-32
%V 347
%N 1
%I Elsevier
%R 10.1016/j.crme.2018.10.001
%G en
%F CRMECA_2019__347_1_19_0
Vincent Chai; Dushyant Parkhi; Sethu Boopathy; Junting Xiang; Jörg Schlüter. A model for the aerodynamic coefficients of rock-like debris. Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 19-32. doi : 10.1016/j.crme.2018.10.001.

[1] H.S. Lim et al. A review: numerical modeling of the debris throw of reinforced concrete structures under internal explosion, Portland, OR, USA (2010)

[2] F. Moghim; F.T. Xia; L. Caracoglia Experimental analysis of a stochastic model for estimating wind-borne compact debris trajectory in turbulent winds, J. Fluids Struct., Volume 54 (2015), pp. 900-924

[3] A.J. Vance; J.M. Buick; J. Livesey Aerodynamics of a Rugby Ball, J. Appl. Mech., Volume 79 (2012) no. 2

[4] S. Chen; D. Zhao Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor, Aerosp. Sci. Technol., Volume 74 (2018), pp. 81-92

[5] X.Q. Zhang; P. Theissen; J.U. Schlüter Towards simulation of flapping wings using immersed boundary method, Int. J. Numer. Methods Fluids, Volume 71 (2013) no. 4, pp. 522-536

[6] X. Wen; H. Tang On hairpin vortices induced by circular synthetic jets in laminar and turbulent boundary layers, Comput. Fluids, Volume 95 (2014), pp. 1-18

[7] S. Chen; D. Zhao Numerical study of guide vane effects on reacting flow characteristics in a trapped vortex combustor, Combust. Sci. Technol., Volume 190 (2018), pp. 2111-2133

[8] G. Liu et al. Numerical simulation of flow behavior of liquid and particles in liquid–solid risers with multi scale interfacial drag method, Adv. Powder Technol., Volume 24 (2013) no. 2, pp. 537-548

[9] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979) no. 1, pp. 47-65

[10] J. Xiang; J. Heng; T.H. New A numerical parametric and optimization study of an industrial air-slide conveyor system, Volume 315 (2017), pp. 367-378 (Powder Technology)

[11] J. Xiang; T.H. New Numerical investigations on a small-scale air-slide conveyor, J. Appl. Fluid Mech., Volume 12 (2019) no. 1

[12] H. Komossa et al. Transversal bed motion in rotating drums using spherical particles: comparison of experiments with DEM simulations, Volume 264 (2014) no. Supplement C, pp. 96-104 (Powder Technology)

[13] S.C. Fan et al. Study of debris throw and dispersion after break-up of reinforced concrete structure under internal explosion, Portland, OR, USA (2010)

[14] P.J. Richards Dispersion of windborne debris, J. Wind Eng. Ind. Aerodyn., Volume 104–106 (2012), pp. 594-602

[15] M. Held Blast impulse at very near distance, Propellants Explos. Pyrotech., Volume 33 (2008) no. 5, pp. 353-359

[16] J.A.B. Wills; B.E. Lee; T.A. Wyatt A model of wind-borne debris damage, J. Wind Eng. Ind. Aerodyn., Volume 90 (2002) no. 4–5, pp. 555-565

[17] M. Tachikawa Trajectories of flat plates in uniform flow with application to wind-generated missiles, J. Wind Eng. Ind. Aerodyn., Volume 14 (1983) no. 1–3, pp. 443-453

[18] J.D. Holmes; C.W. Letchford; N. Lin Investigations of plate-type windborne debris – part II: computed trajectories, J. Wind Eng. Ind. Aerodyn., Volume 94 (2006) no. 1, pp. 21-39

[19] J.D. Holmes Trajectories of spheres in strong winds with application to wind-borne debris, J. Wind Eng. Ind. Aerodyn., Volume 92 (2004), pp. 9-22

[20] C.J. Baker The debris flight equations, J. Wind Eng. Ind. Aerodyn., Volume 95 (2007) no. 5, pp. 329-353

[21] M. Grayson; W.C. Pang; S. Schiff Three-dimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment, J. Wind Eng. Ind. Aerodyn., Volume 102 (2012), pp. 22-35

[22] A. Karimpour; N.B. Kaye On the stochastic nature of compact debris flight, J. Wind Eng. Ind. Aerodyn., Volume 100 (2012) no. 1, pp. 77-90

[23] E.M. Paul TRAJ – A Two Dimensional Trajectory Program for Personal Computer, Defense Technical Information Center, Fort Belvoir, VA, USA, 1990

[24] M.M.v.d Voort; R.J.M.v. A.; Y.S. K. Ballistic Filtering for Improved Trajectory Calculations in the KG Software, 2010 (TNO report TNO-DV 2010 C071)

[25] G. Frank; Gouldstone; A.H. Craig The UK structural debris throw model, 31st DOD Explosive Safety Seminar, San Antonio Marriott Rivercenter, 2004

[26] R. Berglund et al. Break up Tests with Small “Ammunition Houses”, December 2006 (Kasun II, FOI-R–2202-SE. Forsvarsbygg Report 51/06. Technical report)

[27] C. Cusatis et al. Towards the computational analysis of blast induced debris dynamics, International Symposium on Military Aspects of Blast and Shock (MABS21), 2010

[28] H. Schlichting Boundary-Layer Theory, Springer, 2000

[29] X. Ji Design and Analysis on Small Scale Fixed Pitch Straight Bladed Vertical Axis Wind Turbine (SB-VAWTs), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 2012 (PhD thesis)

[30] R. Stoker; K. Ahuja; J. Hsu Separation of wind-tunnel background noise and wind noise from automobile interior measurements, Proc. 2nd Aeroacoustics Conference, State College, PA, USA, American Institute of Aeronautics and Astronautics, 1996

[31] X. Li; D. Zhao; X. Li Effects of background noises on nonlinear dynamics of a modelled thermoacoustic combustor, J. Acoust. Soc. Am., Volume 143 (2018) no. 1, pp. 60-70

[32] K. Pascioni et al. Characterization of an aeroacoustic wind tunnel facility, Melbourne, November 16–19, 2014, Australian Acoustical Society (2014), pp. 16-19

[33] H.C. Garner et al. Subsonic Wind Tunnel Wall Corrections, North Atlantic Treaty Organization, 1966

[34] M.L. Laster Wall Interference in Wind Tunnels, North Atlantic Treaty Organization, 1983

Cited by Sources:

Comments - Policy