Comptes Rendus
Fully coupled hydromechanical model for compacted soils
Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 1-18.

To accomplish a proper conception and further modeling of the mechanical behavior of soils, observations at the micro and macro scales need to be merged. The authors believe that the link between scales can be achieved using the effective stress concept. In this paper, we present a model that quantifies the air and water volumes contained within the pores of a solid when their pore pressure is varied. The macroscopic consequences of this are expressed in terms of a single stress that is used to formulate a simple elastoplastic constitutive model to predict volume strains and shear strength of soils.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.09.005
Mots clés : Constitutive model, Effective stress, Pore-size distribution, Retention curve, Elastoplastic deformation, Hydro-mechanical coupling
Hiram Arroyo 1, 2 ; Eduardo Rojas 1

1 Faculty of Engineering, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, 76160 Querétaro, Qro., Mexico
2 Department of Agroindustrial Engineering, Universidad de Guanajuato, Campus Celaya-Salvatierra, Av. Ing. Javier Barros Sierra 201, 38140 Celaya, Gto., Mexico
@article{CRMECA_2019__347_1_1_0,
     author = {Hiram Arroyo and Eduardo Rojas},
     title = {Fully coupled hydromechanical model for compacted soils},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1--18},
     publisher = {Elsevier},
     volume = {347},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crme.2018.09.005},
     language = {en},
}
TY  - JOUR
AU  - Hiram Arroyo
AU  - Eduardo Rojas
TI  - Fully coupled hydromechanical model for compacted soils
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 1
EP  - 18
VL  - 347
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2018.09.005
LA  - en
ID  - CRMECA_2019__347_1_1_0
ER  - 
%0 Journal Article
%A Hiram Arroyo
%A Eduardo Rojas
%T Fully coupled hydromechanical model for compacted soils
%J Comptes Rendus. Mécanique
%D 2019
%P 1-18
%V 347
%N 1
%I Elsevier
%R 10.1016/j.crme.2018.09.005
%G en
%F CRMECA_2019__347_1_1_0
Hiram Arroyo; Eduardo Rojas. Fully coupled hydromechanical model for compacted soils. Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 1-18. doi : 10.1016/j.crme.2018.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.09.005/

[1] A. Gens; M. Sánchez; D. Sheng On constitutive modelling of unsaturated soils, Acta Geotech., Volume 1 (2006)

[2] D. Sheng Constitutive modelling of unsaturated soils: discussion of fundamental principles (E.E. Alonso; A. Gens, eds.), Unsaturated Soils, CRC Press, 2010 General Report presented at the 5th International Conference on Unsaturated Soils (6–8 September 2010, Barcelona, Spain)

[3] K. Terzaghi Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke, Leipzig and Vienna, 1925

[4] P. Fillunger (1913), pp. 532-556 (Österreichische Wochenschrift für den öffentlichen Baudienst)

[5] A.W. Bishop The principle of effective stress, Tekn. Ukebl., Volume 106 (1959), pp. 859-863

[6] L. Laloui; M. Nuth On the use of the generalised effective stress in the constitutive modelling of unsaturated soils, Comput. Geotech., Volume 36 (2009), pp. 20-23

[7] E. Juárez-Badillo Constitutive relationships for soils, Symp. on Recent Developments in the Analysis of Soil Behavior and Their Application to Geotechnical Structures, University of New South Wales, NSW, Australia, 1975, pp. 231-257

[8] E. Rojas; O. Chávez Volumetric behavior of unsaturated soils, Can. Geotech. J., Volume 50 (2013), pp. 209-222

[9] E.E. Alonso; A. Gens; A. Josa A constitutive model for partially saturated soils, Géotechnique, Volume 40 (1990), pp. 405-430

[10] E. Rojas; M.L. Pérez-Rea; T. López-Lara; J.B. Hernández; J. Horta Use of effective stresses to model the collapse upon, J. Geotech. Geoenviron. Eng., Volume 141 (2015) no. 5

[11] E. Calo; K. Sako; K. Araki; Y. Miyamoto; R. Kitamura A probabilistic and mechanical approach for hysteresis of SWCC in unsaturated soil, Geo-Frontiers 2011, 2011

[12] R. Jaafar; W.J. Likos Estimating water retention characteristics of sands from grain size distribution using idealized packing conditions, ASTM Geotech. Test. J., Volume 34 (2011)

[13] E. Rojas; M.L. Pérez-Rea; G. Gallegos; J. Leal A porous model for the interpretation of mercury porosimetry tests, J. Porous Media, Volume 15 (2012), pp. 517-530

[14] A. Rostami; G. Habibagahi; M. Ajdari; E. Nikooee A pore network investigation on hysteresis phenomena and influence of stress state on the SWRC, Int. J. Geomech., Volume 15 (2013) no. 5

[15] P.H. Simms; E.K. Yanful A pore-network model for hydro-mechanical coupling in unsaturated compacted clayey soils, Can. Geotech. J., Volume 42 (2005), pp. 499-514

[16] A. Koliji; L. Laloui; O. Cuisinier; L. Vulliet Suction induced effects on the fabric of a structured soil, Transp. Porous Media, Volume 64 (2006), pp. 261-278

[17] Y. Li; N.C. Wardlaw Mechanisms of nonwetting phase trapping during imbibition at slow rates, J. Colloid Interface Sci., Volume 109 (1986), pp. 473-486

[18] G. Mason; N.R. Morrow Capillary behavior of a perfectly wetting liquid in irregular triangular tubes, J. Colloid Interface Sci., Volume 141 (1991), pp. 262-274

[19] M. Tuller; D. Or Retention of water in soil and the soil water characteristic curve (D. Hillel, ed.), Encyclopedia of Soils in the Environment, Elsevier Science, Oxford, UK, 2004

[20] H. Arroyo; E. Rojas; M.L. Pérez-Rea; J. Horta; J. Arroyo A porous model to simulate the evolution of the soil–water characteristic curve with volumetric strains, C. R. Mecanique, Volume 343 (2015), pp. 264-274

[21] H. Arroyo; E. Rojas; M.L. Pérez-Rea; J. Horta; J. Arroyo Simulation of the shear strength for unsaturated soils, C. R. Mecanique, Volume 341 (2013), pp. 727-742

[22] E. Rojas; J. Horta; T. López-Lara; J.B. Hernández A probabilistic solid porous model to determine the shear strength of unsaturated soils, Probab. Eng. Mech., Volume 26 (2011)

[23] R. Thom; R. Sivakumar; V. Sivakumar; E.J. Murray; P. Mackinnon Pore size distribution of unsaturated compacted kaolin: the initial states and final states following saturation, Géotechnique, Volume 57 (2007), pp. 469-474

[24] E. Ninjgarav; S.G. Chung; W.Y. Jang; C.K. Ryu Pore size distribution of Pusan clay measured by mercury intrusion porosimetry, KSCE J. Civ. Eng., Volume 11 (2007), pp. 133-139

[25] R. Hu; Y.-F. Chen; H.-H. Liu; C.-B. Zhou A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution, Géotechnique, Volume 63 (2013), pp. 1389-1405

[26] S. Feia; S. Ghabezloo; J.-F. Bruchon; J. Sulem; J. Canou; J.-C. Dupla Experimental evaluation of the pore-access size distribution of sands, Geotech. Test. J., Volume 37 (2014), pp. 1-9

[27] G. Della Vecchia; A.-C. Dieudonné; C. Jommi; R. Charlier Accounting for evolving pore size distribution in water retention models for compacted clays, Int. J. Numer. Anal. Methods Geomech., Volume 39 (2014) no. 7, pp. 702-723

[28] F.A.L. Dullien Porous Media: Fluid Transport and Pore Structure, Academic Press, San Diego, CA, USA, 1992

[29] W.B. Haines Studies in the physical properties of soils: IV. A further contribution to the theory of capillary phenomena in soil, J. Agric. Sci., Volume 17 (1927), pp. 264-290

[30] E. Rojas; O. Chávez; H. Arroyo; T. López-Lara Modeling the dependency of soil–water retention curve on volumetric deformation, Int. J. Geomech., Volume 17 (2017)

[31] L. Barden; A. McGown; K. Collins The collapse mechanism in partly saturated soil, Eng. Geol., Volume 7 (1973), pp. 49-60

[32] A. El Howayek; P. Huang; R. Bisnett; M.C. Santagata Identification and Behavior of Collapsible Soils, 2011 (Joint Transportation Research Program)

[33] Q. Wang; A.M. Tang; Y.-J. Cui; P. Delage; J.-D. Barnichon; W.-M. Ye The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture, Soil Found., Volume 53 (2013), pp. 232-245

[34] E. Rojas Equivalent stress equation for unsaturated soils. I: equivalent stress, Int. J. Geomech., Volume 8 (2008), pp. 285-290

[35] N. Khalili; S. Zargarbashi Influence of hydraulic hysteresis on effective stress in unsaturated soils, Géotechnique, Volume 60 (2010), pp. 729-734

[36] M. Nuth; L. Laloui Effective stress concept in unsaturated soils: clarification and validation of a unified framework, Int. J. Numer. Anal. Methods Geomech., Volume 32 (2008), pp. 771-801

[37] D.M. Wood Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, 1990

[38] K.H. Roscoe; J.B. Burland On the generalized stress–strain behavior of ‘wet’ clay, Engineering Plasticity, Cambridge University Press, Cambridge, UK, 1968, pp. 535-609

[39] M.M. Futai; M.S.S. Almeida An experimental investigation of the mechanical behaviour of an unsaturated gneiss residual soil, Géotechnique, Volume 55 (2005), pp. 201-213

[40] P. Hervé; H. Tomasz; L. Lyesse; H. LiangBo Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification, Can. Geotech. J., Volume 46 (2009), pp. 1177-1201

[41] K.C. Power; S.K. Vanapalli; V.K. Garga A revised contact filter paper method, Geotech. Test. J., Volume 31 (2008)

[42] H.P. Cresswell; T.W. Green; N.J. McKenzie The adequacy of pressure plate apparatus for determining soil water retention, Soil Sci. Soc. Am. J., Volume 27 (2008), pp. 41-49

[43] N. Khalili; M.A. Habte; S. Zargarbashi A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis, Comput. Geotech., Volume 35 (2008), pp. 872-889

[44] Y.J. Cui; P. Delage Yielding and plastic behaviour of an unsaturated compacted silt, Géotechnique, Volume 46 (1996), pp. 291-311

[45] M. Taiebat; Y.F. Dafalias Simple yield surface expressions appropriate for soil plasticity, Int. J. Geomech., Volume 10 (2010), pp. 161-169

[46] X. Gao; T. Zhang; J. Zhou; S.M. Graham; M. Hayden; C. Roe On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, Int. J. Plast., Volume 27 (2011), pp. 217-231

[47] T.B. Stoughton; J.W. Yoon A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming, Int. J. Plast., Volume 20 (2004), pp. 705-731

[48] F. Ma; K. Kishimoto On yielding and deformation of porous plastic materials, Mech. Mater., Volume 30 (1998), pp. 55-68

[49] A. Zhou; D. Sheng An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities, Comput. Geotech., Volume 63 (2015), pp. 46-66

[50] A.R. Rusell; N. Khalili A unified bounding surface plasticity model for unsaturated soils, Int. J. Numer. Anal. Methods Geomech., Volume 30 (2006), pp. 181-212

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Modeling the soil–water retention curves while the soil is deforming

Eduardo Rojas; Hiram Arroyo; Jaime Horta; ...

C. R. Méca (2020)


Modelling the effect of temperature on unsaturated soil behaviour

Matthieu Dumont; Said Taibi; Jean-Marie Fleureau; ...

C. R. Géos (2010)


Simulation of the shear strength for unsaturated soils

Hiram Arroyo; Eduardo Rojas; María de la Luz Pérez-Rea; ...

C. R. Méca (2013)