Comptes Rendus
Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws
Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 62-89.

Investigating the dilatancy, acoustic emission and failure characteristics of fissured rock are significant to ensure their geotechnical stability. In this paper, the uniaxial and triaxial compression experiments with AE monitoring under different loading rates were carried out on fissured rock specimens with the same geometrical distribution of two pre-existing flaws. The dilatancy and AE activity of these specimens were discussed, and the effects of the confining pressure and loading rate on the mechanical parameters and failure characteristics were analyzed. The results show that the exponential strength criterion is more suitable than the Mohr–Coulomb strength criterion to characterize the strength characteristics of fissured rock. The crack evolution and failure characteristics of fissured rock specimens are more complicated than those of intact rock specimens. The failure characteristics of the fissured rock follow the tensile shear coalescence model, crack branching occurs with increasing the loading rate, and the multi-section coalescence model is verified with increasing the confining pressure. The phenomena of stress drop and yield platform usually occur after the dilatancy onset, the specimen does not fail instantaneously, and the propagation and coalescence of cracks cause a sharp increase in the AE signals, circumferential strain, and volumetric strain.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.10.002
Mots clés : Fissured rock, Pre-existing flaws, Strength, Deformation, Dilatancy, Acoustic emission, Failure
Jiangyu Wu 1, 2, 3 ; Meimei Feng 1, 2 ; Guansheng Han 1, 2 ; Benyu Yao 2 ; Xiaoyan Ni 4

1 State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
2 School of Mechanics & Civil Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
3 Nottingham Centre for Geomechanics, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
4 School of construction engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou, Jiangsu 221116, China
@article{CRMECA_2019__347_1_62_0,
     author = {Jiangyu Wu and Meimei Feng and Guansheng Han and Benyu Yao and Xiaoyan Ni},
     title = {Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {62--89},
     publisher = {Elsevier},
     volume = {347},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crme.2018.10.002},
     language = {en},
}
TY  - JOUR
AU  - Jiangyu Wu
AU  - Meimei Feng
AU  - Guansheng Han
AU  - Benyu Yao
AU  - Xiaoyan Ni
TI  - Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 62
EP  - 89
VL  - 347
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2018.10.002
LA  - en
ID  - CRMECA_2019__347_1_62_0
ER  - 
%0 Journal Article
%A Jiangyu Wu
%A Meimei Feng
%A Guansheng Han
%A Benyu Yao
%A Xiaoyan Ni
%T Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws
%J Comptes Rendus. Mécanique
%D 2019
%P 62-89
%V 347
%N 1
%I Elsevier
%R 10.1016/j.crme.2018.10.002
%G en
%F CRMECA_2019__347_1_62_0
Jiangyu Wu; Meimei Feng; Guansheng Han; Benyu Yao; Xiaoyan Ni. Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws. Comptes Rendus. Mécanique, Volume 347 (2019) no. 1, pp. 62-89. doi : 10.1016/j.crme.2018.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.10.002/

[1] M. Brideau; M. Yan; D. Stead The role of tectonic damage and brittle rock fracture in the development of large rock slope failures, Geomorphology, Volume 103 (2009) no. 1, pp. 30-49

[2] P. Cao; T. Liu; C. Pu; H. Lin Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression, Eng. Geol., Volume 187 (2015), pp. 113-121

[3] G.S. Esterhuizen; D.R. Dolinar; J.L. Ellenberger Pillar strength in underground stone mines in the United States, Int. J. Rock Mech. Min. Sci., Volume 48 (2011) no. 1, pp. 42-50

[4] P.O. Koons; P. Upton; A.D. Barker The influence of mechanical properties on the link between tectonic and topographic evolution, Geomorphology, Volume 137 (2012) no. 1, pp. 168-180

[5] R.C. Liu; B. Li; L.Y. Yu; Y.J. Jiang; H.W. Jing A discrete-fracture-network fault model revealing permeability and aperture evolutions of a fault after earthquakes, Int. J. Rock Mech. Min. Sci., Volume 107 (2018) no. 7, pp. 19-24

[6] G. Papathanassiou; S. Valkaniotis; A. Ganas; N. Grendas; E. Kollia The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: field mapping of generated failures and assessment of macroseismic intensity ESI-07, Eng. Geol., Volume 220 (2017), pp. 13-30

[7] I. Rigopoulos; B. Tsikouras; P. Pomonis; K. Hatzipanagiotou Petrographic investigation of microcrack initiation in mafic ophiolitic rocks under uniaxial compression, Rock Mech. Rock Eng., Volume 46 (2013) no. 5, pp. 1061-1072

[8] T. Kogure; H. Aoki; A. Maekado; T. Hirose; Y. Matsukura Effect of the development of notches and tension cracks on instability of limestone coastal cliffs in the Ryukyus, Japan, Geomorphology, Volume 80 (2006) no. 3, pp. 236-244

[9] X. Li; S.J. Wang; T.Y. Liu; F.S. Ma Engineering geology, ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine, Eng. Geol., Volume 76 (2004) no. 1–2, pp. 93-107

[10] R.C. Liu; B. Li; Y.J. Jiang Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness, and number of intersections, Adv. Water Resour., Volume 88 (2016) no. 2, pp. 53-65

[11] L. Causse; R. Cojean; J.A. Fleurisson Interaction between tunnel and unstable slope-influence of time-dependent behavior of a tunnel excavation in a deep-seated gravitational slope deformation, Tunn. Undergr. Space Technol., Volume 50 (2015), pp. 270-281

[12] M.M. Feng; J.Y. Wu; D. Ma; X.Y. Ni; B.Y. Yu; Z.Q. Chen Experimental investigation on seepage property of saturated broken red sandstone of continuous gradation, Bull. Eng. Geol. Environ. (2017) | DOI

[13] N. Koronakis; P. Kontothanassis; N. Kazilis; N. Gikas Stabilization measures for shallow tunnels with ongoing translational movements due to slope instability, Tunn. Undergr. Space Technol., Volume 19 (2004) no. 4–5, p. 495

[14] R.C. Liu; B. Li; Y.J. Jiang A fractal model based on a new governing equation of fluid flow in fractures for characterizing hydraulic properties of rock fracture networks, Comput. Geotech., Volume 75 (2016) no. 5, pp. 57-68

[15] M. Makowska; D. Mège; F. Gueydan; J. Chéry Mechanical conditions and modes of paraglacial deep-seated gravitational spreading in Valles Marineris, Mars, Geomorphology, Volume 268 (2016), pp. 246-252

[16] D. Boldini; A. Graziani Remarks on axisymmetric modelling of deep tunnels in argillaceous formations-II: fissured argillites, Tunn. Undergr. Space Technol., Volume 28 (2012) no. 3, pp. 80-89

[17] Y.C. Chiu; C.H. Lee; T.T. Wang Lining crack evolution of an operational tunnel influenced by slope instability, Tunn. Undergr. Space Technol., Volume 65 (2017), pp. 167-178

[18] L.C. Li; T.H. Yang; Z.Z. Liang; W.C. Zhu; C.A. Tang Numerical investigation of groundwater outbursts near faults in underground coal mines, Int. J. Coal Geol., Volume 85 (2011) no. 3–4, pp. 276-288

[19] R.C. Liu; Y.J. Jiang; B. Li; X.S. Wang A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks, Comput. Geotech., Volume 65 (2015) no. 4, pp. 45-55

[20] M.G. Sweetenham; R.M. Maxwell; P.M. Santi Assessing the timing and magnitude of precipitation-induced seepage into tunnels bored through fractured rock, Tunn. Undergr. Space Technol., Volume 65 (2013), pp. 62-75

[21] T.H. Yang; J. Liu; W.C. Zhu; D. Elsworth; L.G. Tham; C.A. Tang A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations, Int. J. Rock Mech. Min. Sci., Volume 44 (2007) no. 1, pp. 87-97

[22] T.H. Yang; T. Xu; H.Y. Liu; C.A. Tang; B.M. Shi; Q.X. Yu Stress-damage-flow coupling model and its application to pressure relief coal bed methane in deep coal seam, Int. J. Coal Geol., Volume 86 (2011) no. 4, pp. 357-366

[23] T.H. Yang; W.C. Zhu; Q.L. Yu; H.L. Liu The role of pore pressure during hydraulic fracturing and implications groundwater outbursts in mining and tunnelling, Hydrogeol. J., Volume 19 (2011) no. 5, pp. 995-1008

[24] K. Zhang; T.H. Yang; H.B. Bai; R.P. Gamage Longwall mining-induced damage and fractures: field measurements and simulation using FDM and DEM coupled method, Int. J. Geomech., Volume 18 (2018) no. 1

[25] C. Wang; D.D. Tannant; P.A. Lilly Numerical analysis of the stability of heavily jointed rock slopes using PFC2D, Int. J. Rock Mech. Min. Sci., Volume 40 (2003) no. 3, pp. 415-424

[26] J.P. Latham; J. Xiang; M. Belayneh; H.M. Nick; C.F. Tsang; M.J. Blunt Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures, Int. J. Rock Mech. Min. Sci., Volume 57 (2012) no. 1, pp. 100-112

[27] M.R. Ayatollahi; J. Akbardoost Size and geometry effects on rock fracture toughness: Mode I fracture, Rock Mech. Rock Eng., Volume 47 (2014) no. 2, pp. 677-687

[28] R.H. Cao; P. Cao; H. Lin; C.Z. Pu; K. Ou Mechanical behavior of brittle rock-like specimens with pre-existing flaws under uniaxial loading: experimental studies and particle mechanics approach, Rock Mech. Rock Eng., Volume 49 (2016) no. 3, pp. 763-783

[29] X.B. Li; T.S. Lok; J. Zhao Dynamic characteristics of granite subjected to intermediate loading rate, Rock Mech. Rock Eng., Volume 38 (2005) no. 1, pp. 21-39

[30] O. Mughieda; M.T. Omar Stress analysis for rock mass failure with offset joints, Geotech. Geolog. Eng., Volume 26 (2008) no. 5, pp. 543-552

[31] R.H.C. Wong; K.T. Chau; C.A. Tang; P. Lin Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach, Int. J. Rock Mech. Min. Sci., Volume 38 (2001) no. 7, pp. 909-924

[32] J.Y. Wu; M.M. Feng; B.Y. Yu; G.S. Han The length of pre-existing fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering, Ultrasonics, Volume 82 (2018) no. 1, pp. 188-199

[33] S.Q. Yang Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure, Eng. Fract. Mech., Volume 78 (2011) no. 17, pp. 3059-3081

[34] S.Q. Yang; H.W. Jing Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression, Int. J. Fract., Volume 168 (2011) no. 2, pp. 227-250

[35] X.P. Zhou; Y.T. Wang Numerical simulation of crack propagation and coalescence in pre-fissured rock-like Brazilian disks using the non-ordinary state-based peridynamics, Int. J. Rock Mech. Min. Sci., Volume 89 (2016) no. 10, pp. 235-249

[36] Y.H. Huang; S.Q. Yang; P.G. Ranjith; J. Zhao Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: experimental study and particle flow modeling, Comput. Geotech., Volume 88 (2017) no. 8, pp. 182-198

[37] J. Lee; Y.D. Ha; J.W. Hong Crack coalescence morphology in rock-like material under compression, Int. J. Fract., Volume 203 (2017) no. 1, pp. 211-236

[38] C.H. Park; A. Bobet Crack coalescence in specimens with open and closed flaws: a comparison, Int. J. Rock Mech. Min. Sci., Volume 46 (2009) no. 5, pp. 819-829

[39] C.H. Park; A. Bobet Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression, Eng. Fract. Mech., Volume 77 (2010) no. 14, pp. 2727-2748

[40] M. Sagong; A. Bobet Coalescence of multiple flaws in a rock-model material in uniaxial compression, Int. J. Rock Mech. Min. Sci., Volume 39 (2002) no. 2, pp. 229-241

[41] C.A. Tang; P. Lin; R.H.C. Wong; K.T. Chau Analysis of crack coalescence in rock-like materials containing three flaws-part II: numerical approach, Int. J. Rock Mech. Min. Sci., Volume 38 (2001) no. 7, pp. 925-939

[42] R.H.C. Wong; K.T. Chau Crack coalescence in a rock-like material containing two cracks, Int. J. Rock Mech. Min. Sci., Volume 35 (1998) no. 2, pp. 147-164

[43] L.N.Y. Wong; H.H. Einstein Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression, Int. J. Rock Mech. Min. Sci., Volume 46 (2009) no. 3, pp. 239-249

[44] X.T. Feng; S. Chen; H. Zhou Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion, Int. J. Rock Mech. Min. Sci., Volume 41 (2004) no. 2, pp. 181-192

[45] A. Ghazvinian; V. Sarfarazi; W. Schubert; M. Blumel A study of the failure mechanism of planar non-persistent open joints using pfc2d, Rock Mech. Rock Eng., Volume 45 (2012) no. 5, pp. 677-693

[46] A. Manouchehrian; M.F. Marji Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-fissured rock under compression, Acta Mech. Sin., Volume 28 (2012) no. 5, pp. 1389-1397

[47] A. Manouchehrian; M. Sharifzadeh; M.F. Marji; J. Gholamnejad A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression, Arch. Civ. Mech. Eng., Volume 14 (2013) no. 1, pp. 40-52

[48] S.Q. Yang; Y.H. Huang; H.W. Jing; X.R. Liu Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression, Eng. Geol., Volume 178 (2014) no. 6, pp. 28-48

[49] X.P. Zhang; L.N.Y. Wong Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach, Rock Mech. Rock Eng., Volume 45 (2012) no. 5, pp. 711-737

[50] X.P. Zhang; L.N.Y. Wong Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach, Rock Mech. Rock Eng., Volume 46 (2013) no. 5, pp. 1001-1021

[51] Z.N. Zhang; D.Y. Wang; H. Zheng; X.R. Ge Interactions of 3D embedded parallel vertically inclined cracks subjected to uniaxial compression, Theor. Appl. Fract. Mech., Volume 61 (2012) no. 1, pp. 1-11

[52] H. Lee; S. Jeon An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression, Int. J. Solids Struct., Volume 48 (2011) no. 6, pp. 979-999

[53] Z.Z. Liang; H. Xing; S.Y. Wang; D.J. Williams; C.A. Tang A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw, Comput. Geotech., Volume 45 (2012) no. 45, pp. 19-33

[54] X.T. Feng; W. Ding Experimental study of limestone micro-fracturing under a coupled stress, fluid flow and changing chemical environment, Int. J. Rock Mech. Min. Sci., Volume 44 (2007) no. 3, pp. 437-448

[55] X.T. Feng; W. Ding; D. Zhang Multi-crack interaction in limestone subject to stress and flow of chemical solutions, Int. J. Rock Mech. Min. Sci., Volume 46 (2009) no. 1, pp. 159-171

[56] C.A. Tang; S.Q. Kou Crack propagation and coalescence in brittle materials under compression, Eng. Fract. Mech., Volume 61 (1998) no. 3–4, pp. 311-324

[57] X.P. Zhang; L.N.Y. Wong Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression, Int. J. Fract., Volume 180 (2013) no. 1, pp. 93-110

[58] S. Cao; W.D. Song; E. Yilmaz Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., Volume 174 (2018), pp. 190-201

[59] J.A.D.M. Franco; J.L. Armelin; J.A.F. Santiago; J.C.F. Telles; W.J. Mansur Determination of the natural stress state in a Brazilian rock mass by back analysing excavation measurements: a case study, Int. J. Rock Mech. Min. Sci., Volume 39 (2002) no. 8, pp. 1005-1032

[60] Y.H. Huang; S.Q. Yang; J. Zhao Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures, Rock Mech. Rock Eng., Volume 49 (2016) no. 12, pp. 4711-4729

[61] R.P. Tiwari; K.S. Rao Physical modeling of a rock mass under a true triaxial stress state, Int. J. Rock Mech. Min. Sci., Volume 41 (2004) no. 3, pp. 396-401

[62] Z.T. Bieniawski Rock Mechanics Design in Mining and Tunneling, A.A. Balkema, Rotterdam, 1984

[63] K. Hashiba; S. Okubo; K. Fukui A new testing method for investigating the loading rate dependency of peak and residual rock strength, Int. J. Rock Mech. Min. Sci., Volume 43 (2006) no. 6, pp. 894-904

[64] Y.P. Li; L.Z. Chen; Y.H. Wang Experimental research on pre-cracked marble under compression, Int. J. Solids Struct., Volume 42 (2005) no. 9–10, pp. 2505-2516

[65] X.B. Li; M. Tao; C.Q. Wu; K. Du; Q.H. Wu Spalling strength of rock under different static pre-confining pressures, Int. J. Impact Eng., Volume 99 (2017) no. 1, pp. 69-74

[66] S.K. Ray; M. Sarkar; T.N. Singh Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone, Int. J. Rock Mech. Min. Sci., Volume 36 (1999) no. 4, pp. 543-549

[67] C.A. Tang; T. Xu; T.H. Yang; Z.Z. Liang Numerical investigation of the mechanical behavior of rock under confining pressure and pore pressure, Int. J. Rock Mech. Min. Sci., Volume 41 (2004) no. 3, pp. 421-422

[68] J.Y. Wu; M.M. Feng; B.Y. Yu; W.L. Zhang; X.Y. Ni; G.S. Han Experimental investigation on dilatancy behavior of water-saturated sandstone, Int. J. Min. Sci. Technol., Volume 28 (2018) no. 2, pp. 323-329

[69] R. Ulusay The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, Springer International Publishing, 2015

[70] A. Bobet; H.H. Einstein Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci., Volume 35 (1998) no. 7, pp. 863-888

[71] S.Q. Yang; Y.Z. Jiang; W.Y. Xu; X.Q. Chen Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression, Int. J. Solids Struct., Volume 45 (2008) no. 17, pp. 4796-4819

[72] D. Huang; D.M. Gu; C. Yang; R.Q. Huang; G.Y. Fu Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression, Rock Mech. Rock Eng., Volume 49 (2016) no. 2, pp. 375-399

[73] S.Q. Yang; Y.H. Dai; L.J. Han; Z.Q. Jin Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression, Eng. Fract. Mech., Volume 76 (2009) no. 12, pp. 1833-1845

[74] S. Cao; W.D. Song Effect of filling interval time on the mechanical strength and ultrasonic properties of cemented coarse tailing backfill, Int. J. Miner. Process., Volume 166 (2017), pp. 62-68

[75] S. Cao; E. Yilmaz; W.D. Song Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, Volume 8 (2018), p. 352

[76] P.B. Zdeněk; S.P. Bai; R. Gettu Fracture of rock: effect of loading rate, Eng. Fract. Mech., Volume 45 (1993) no. 3, pp. 393-398

[77] M. Cai; P.K. Kaiser; Y. Tasaka; T. Maejimac; H. Moriokac; M. Minami Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations, Int. J. Rock Mech. Min. Sci., Volume 41 (2004) no. 5, pp. 833-847

[78] S.C. Cowin Constitutive relations that imply a generalized Mohr–Coulomb criterion, Acta Mech., Volume 20 (1974) no. 1–2, pp. 41-46

[79] E. Hoek Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 27 (1990) no. 3, pp. 227-229

[80] E. Hoek; P.K. Kaiser; W.F. Bawden Support of Underground Excavations in Hard Rock, Balkema, Rotterdam, The Netherlands, 1995

[81] Y. Obara; Y. Ishiguro Measurements of induced stress and strength in the near-field around a tunnel and associated estimation of the Mohr–Coulomb parameters for rock mass strength, Int. J. Rock Mech. Min. Sci., Volume 41 (2004) no. 5, pp. 761-769

[82] T. Benz; R. Schwab A quantitative comparison of six rock failure criteria, Int. J. Rock Mech. Min., Volume 45 (2008) no. 7, pp. 1176-1186

[83] M.Q. You True-triaxial strength criteria for rock, Int. J. Rock Mech. Min. Sci., Volume 46 (2009) no. 1, pp. 115-127

[84] M.Q. You Comparison of the accuracy of some conventional triaxial strength criteria for intact rock, Int. J. Rock Mech. Min. Sci., Volume 48 (2011) no. 5, pp. 852-863

[85] M.Q. You Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses, Int. J. Rock Mech. Min. Sci., Volume 47 (2010) no. 2, pp. 195-204

[86] Y.H. Huang; S.Q. Yang; M.R. Hall; W.L. Tian; P.F. Yin Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity, Arch. Civ. Mech. Eng., Volume 18 (2018) no. 4, pp. 1359-1373

[87] D. Martin; N.A. Chandler The progressive fracture of Lac du Bonnet Granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 31 (1994) no. 6, pp. 643-659

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Experimental characterization of the thermo-poro-mechanical properties of the Aegion Fault gouge

Jean Sulem; Ioannis Vardoulakis; Hichem Ouffroukh; ...

C. R. Géos (2004)


Experimental evidences of transition from mode I cracking to dilatancy banding

Alexandre I. Chemenda; Si-Hung Nguyen; Jean-Pierre Petit; ...

C. R. Méca (2011)


Microstructural formulation of stress dilatancy

Richard Wan; Peijun Guo

C. R. Méca (2014)