The over-relaxation approach is an alternative to the Jin–Xin relaxation method in order to apply the equilibrium source term in a more precise way. This is also a key ingredient of the lattice Boltzmann method for achieving second-order accuracy. In this work, we provide an analysis of the over-relaxation kinetic scheme. We compute its equivalent equation, which is particularly useful for devising stable boundary conditions for the hidden kinetic variables.
Accepted:
Published online:
Florence Drui 1; Emmanuel Franck 1; Philippe Helluy 1; Laurent Navoret 1
@article{CRMECA_2019__347_3_259_0, author = {Florence Drui and Emmanuel Franck and Philippe Helluy and Laurent Navoret}, title = {An analysis of over-relaxation in a kinetic approximation of systems of conservation laws}, journal = {Comptes Rendus. M\'ecanique}, pages = {259--269}, publisher = {Elsevier}, volume = {347}, number = {3}, year = {2019}, doi = {10.1016/j.crme.2018.12.001}, language = {en}, }
TY - JOUR AU - Florence Drui AU - Emmanuel Franck AU - Philippe Helluy AU - Laurent Navoret TI - An analysis of over-relaxation in a kinetic approximation of systems of conservation laws JO - Comptes Rendus. Mécanique PY - 2019 SP - 259 EP - 269 VL - 347 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2018.12.001 LA - en ID - CRMECA_2019__347_3_259_0 ER -
%0 Journal Article %A Florence Drui %A Emmanuel Franck %A Philippe Helluy %A Laurent Navoret %T An analysis of over-relaxation in a kinetic approximation of systems of conservation laws %J Comptes Rendus. Mécanique %D 2019 %P 259-269 %V 347 %N 3 %I Elsevier %R 10.1016/j.crme.2018.12.001 %G en %F CRMECA_2019__347_3_259_0
Florence Drui; Emmanuel Franck; Philippe Helluy; Laurent Navoret. An analysis of over-relaxation in a kinetic approximation of systems of conservation laws. Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 259-269. doi : 10.1016/j.crme.2018.12.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.12.001/
[1] The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun. Pure Appl. Math., Volume 48 (1995) no. 3, pp. 235-276
[2] Hyperbolic conservation laws with stiff relaxation terms and entropy, Commun. Pure Appl. Math., Volume 47 (1994) no. 6, pp. 787-830
[3] Convergence to equilibrium for the relaxation approximations of conservation laws, Commun. Pure Appl. Math., Volume 49 (1996) no. 8, pp. 795-823
[4] Twenty-eight years with “Hyperbolic conservation laws with relaxation”, Acta Math. Sci., Volume 35 (2015) no. 4, pp. 807-831 (ISSN: 0252-9602) | DOI
[5] An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., Volume 65 (2013) no. 2, pp. 129-141
[6] Palindromic discontinuous Galerkin method for kinetic equations with stiff relaxation (arXiv preprint) | arXiv
[7] Palindromic discontinuous Galerkin method, International Conference on Finite Volumes for Complex Applications, Springer, 2017, pp. 171-178
[8] Error bounds for exponential operator splittings, BIT Numer. Math., Volume 40 (2000) no. 4, pp. 735-744 (ISSN: 1572-9125) | DOI
[9] An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime, BIT Numer. Math., Volume 50 (2010) no. 4, pp. 729-749 (ISSN: 1572-9125) | DOI
[10] Stability and stabilization of the lattice Boltzmann method, Phys. Rev. E, Volume 75 (2007) | DOI
[11] Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31, Springer Science & Business Media, 2006
[12] Splitting methods, Acta Numer., Volume 11 (2002), pp. 341-434
[13] Equivalent partial differential equations of a lattice Boltzmann scheme, Comput. Math. Appl., Volume 55 (2008) no. 7, pp. 1441-1449
[14] An analysis of operator splitting techniques in the stiff case, J. Comput. Phys., Volume 161 (2000) no. 1, pp. 140-168
[15] Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 329-364
Cited by Sources:
☆ This work has been supported by ANR EXAMAG project, ANR-15-SPPE-0002.
Comments - Policy