In the present work, we propose a numerical analysis of instability and bifurcations for geometrically nonlinear elasticity problems. These latter are solved by using the Asymptotic Numerical Method (ANM) associated with the Method of Fundamental Solutions (MFS). To compute bifurcation points and to determine the critical loads, we propose three techniques. The first one is based on a geometrical indicator obtained by analyzing the Taylor series. The second one exploits the properties of the Padé approximants, and the last technique uses an analytical bifurcation indicator. Numerical examples are studied to show the efficiency and the reliability of the proposed algorithms.
Accepted:
Published online:
Omar Askour 1; Abdeljalil Tri 2, 3; Bouazza Braikat 1; Hamid Zahrouni 4, 5; Michel Potier-Ferry 4, 5
@article{CRMECA_2019__347_2_91_0, author = {Omar Askour and Abdeljalil Tri and Bouazza Braikat and Hamid Zahrouni and Michel Potier-Ferry}, title = {Bifurcation indicator for geometrically nonlinear elasticity using the {Method} of {Fundamental} {Solutions}}, journal = {Comptes Rendus. M\'ecanique}, pages = {91--100}, publisher = {Elsevier}, volume = {347}, number = {2}, year = {2019}, doi = {10.1016/j.crme.2019.01.002}, language = {en}, }
TY - JOUR AU - Omar Askour AU - Abdeljalil Tri AU - Bouazza Braikat AU - Hamid Zahrouni AU - Michel Potier-Ferry TI - Bifurcation indicator for geometrically nonlinear elasticity using the Method of Fundamental Solutions JO - Comptes Rendus. Mécanique PY - 2019 SP - 91 EP - 100 VL - 347 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2019.01.002 LA - en ID - CRMECA_2019__347_2_91_0 ER -
%0 Journal Article %A Omar Askour %A Abdeljalil Tri %A Bouazza Braikat %A Hamid Zahrouni %A Michel Potier-Ferry %T Bifurcation indicator for geometrically nonlinear elasticity using the Method of Fundamental Solutions %J Comptes Rendus. Mécanique %D 2019 %P 91-100 %V 347 %N 2 %I Elsevier %R 10.1016/j.crme.2019.01.002 %G en %F CRMECA_2019__347_2_91_0
Omar Askour; Abdeljalil Tri; Bouazza Braikat; Hamid Zahrouni; Michel Potier-Ferry. Bifurcation indicator for geometrically nonlinear elasticity using the Method of Fundamental Solutions. Comptes Rendus. Mécanique, Volume 347 (2019) no. 2, pp. 91-100. doi : 10.1016/j.crme.2019.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.01.002/
[1] High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems, Eng. Anal. Bound. Elem., Volume 36 (2012), pp. 1705-1714
[2] Bifurcation indicator based on meshless and asymptotic numerical methods for nonlinear Poisson problems, Numer. Methods Partial Differ. Equ., Volume 30 (2014), pp. 978-993
[3] A 2D mechanical-thermal coupled model to simulate material mixing observed in friction stir welding process, Eng. Comput., Volume 33 (2017) no. 4, pp. 885-895
[4] A numerical continuation method based on Padé approximants, Int. J. Solids Struct., Volume 37 (2000) no. 46–47, pp. 6981-7001
[5] A path-following technique via an asymptotic-numerical method, Comput. Struct., Volume 53 (1994) no. 5, pp. 1181-1192
[6] Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems, Eng. Anal. Bound. Elem., Volume 89 (2018), pp. 25-35
[7] The method of functional equations for the approximate solution of certain boundary value problems, USSR Comput. Math. Math. Phys., Volume 4 (1964) no. 4, pp. 82-126
[8] Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems, J. Comput. Phys., Volume 172 (2001) no. 1, pp. 1-18
[9] An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems, Comput. Math. Appl., Volume 43 (2002) no. 3–5, pp. 289-304
[10] The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity, Int. J. Solids Struct., Volume 41 (2004) no. 13, pp. 3425-3438
[11] The method of fundamental solutions for an inverse boundary value problem in static thermo-elasticity, Comput. Struct., Volume 135 (2014), pp. 32-39
[12] RBF meshless method for large deflection of thin plates with immovable edges, Eng. Anal. Bound. Elem., Volume 33 (2009) no. 2, pp. 176-183
[13] A study of elastic-plastic deformation in the plate with the incremental theory and the meshless methods, J. Mech. Mater. Struct., Volume 11 (2016) no. 1, pp. 41-60
[14] Méthode asymptotique numérique, Hermès Lavoisier, 2007
[15] The boundary element method for nonlinear problems, Eng. Anal. Bound. Elem., Volume 23 (1999) no. 5–6, pp. 365-373
[16] A dual reciprocity formulation for elasticity problems with body forces using augmented thin plate splines, Commun. Numer. Methods Eng., Volume 12 (1996) no. 3, pp. 209-220
Cited by Sources:
Comments - Policy