Comptes Rendus
Force–displacement relationship in micro-metric pantographs: Experiments and numerical simulations
Comptes Rendus. Mécanique, Volume 347 (2019) no. 5, pp. 397-405.

In this paper, we reveal that the mathematical discrete model of Hencky type, introduced in [1], is appropriate for describing the mechanical behavior of micro-metric pantographic elementary modules. This behavior does not differ remarkably from what has been observed for milli-metric modules, as we prove with suitably designed experiments. Therefore, we conclude that the concept of pantographic microstructure seems feasible for micro-metrically architected microstructured (meta)materials as well. These results are particularly indicative of the possibility of fabricating materials that can have an underlying pantographic microstructure at micrometric scale, so that its unique behavior can be exploited in a larger range of technological applications.

Published online:
DOI: 10.1016/j.crme.2019.03.015
Keywords: Micro- and mini-pantographic lattices, Lagrangian models, Nonlinear analysis

Francesco dell'Isola 1; Emilio Turco 2; Anil Misra 3; Zacharias Vangelatos 4; Costas Grigoropoulos 4; Vasileia Melissinaki 5; Maria Farsari 5

1 Department of Structural and Geotechnical Engineering, University of Rome “La Sapienza”, Italy
2 Department of Architecture, Design and Urban planning, University of Sassari, Italy
3 Department of Civil, Environmental and Architectural Engineering, The University of Kansas, USA
4 Department of Mechanical Engineering, University of California, Berkeley, USA
5 IESL-FORTH, Crete, Greece
     author = {Francesco dell'Isola and Emilio Turco and Anil Misra and Zacharias Vangelatos and Costas Grigoropoulos and Vasileia Melissinaki and Maria Farsari},
     title = {Force{\textendash}displacement relationship in micro-metric pantographs: {Experiments} and numerical simulations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {397--405},
     publisher = {Elsevier},
     volume = {347},
     number = {5},
     year = {2019},
     doi = {10.1016/j.crme.2019.03.015},
     language = {en},
AU  - Francesco dell'Isola
AU  - Emilio Turco
AU  - Anil Misra
AU  - Zacharias Vangelatos
AU  - Costas Grigoropoulos
AU  - Vasileia Melissinaki
AU  - Maria Farsari
TI  - Force–displacement relationship in micro-metric pantographs: Experiments and numerical simulations
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 397
EP  - 405
VL  - 347
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2019.03.015
LA  - en
ID  - CRMECA_2019__347_5_397_0
ER  - 
%0 Journal Article
%A Francesco dell'Isola
%A Emilio Turco
%A Anil Misra
%A Zacharias Vangelatos
%A Costas Grigoropoulos
%A Vasileia Melissinaki
%A Maria Farsari
%T Force–displacement relationship in micro-metric pantographs: Experiments and numerical simulations
%J Comptes Rendus. Mécanique
%D 2019
%P 397-405
%V 347
%N 5
%I Elsevier
%R 10.1016/j.crme.2019.03.015
%G en
%F CRMECA_2019__347_5_397_0
Francesco dell'Isola; Emilio Turco; Anil Misra; Zacharias Vangelatos; Costas Grigoropoulos; Vasileia Melissinaki; Maria Farsari. Force–displacement relationship in micro-metric pantographs: Experiments and numerical simulations. Comptes Rendus. Mécanique, Volume 347 (2019) no. 5, pp. 397-405. doi : 10.1016/j.crme.2019.03.015.

[1] E. Turco; F. dell'Isola; A. Cazzani; N.L. Rizzi Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models, Z. Angew. Math. Phys., Volume 67 ( August 2016 ) no. 4, pp. 1-28

[2] F. dell'Isola; D. Steigmann; A. Della Corte Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response, Appl. Mech. Rev., Volume 67 (2015) no. 6

[3] F. dell'Isola; T. Lekszycki; M. Pawlikowski; R. Grygoruk; L. Greco Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence, Z. Angew. Math. Phys., Volume 66 (2015) no. 6, pp. 3473-3498

[4] U. Andreaus; F. dell'Isola; M. Porfiri Piezoelectric passive distributed controllers for beam flexural vibrations, J. Vib. Control, Volume 10 (2004) no. 5, pp. 625-659

[5] V.A. Eremeyev; F. dell'Isola; C. Boutin; D. Steigmann Linear pantographic sheets: existence and uniqueness of weak solutions, J. Elast., Volume 132 (2018) no. 2, pp. 175-196

[6] E. Turco; A. Misra; R. Sarikaya; T. Lekszycki Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling, Contin. Mech. Thermodyn., Volume 31 (2019) no. 1, pp. 209-223 | DOI

[7] R. Golaszewski; M. Grygoruk; I. Giorgio; M. Laudato; F. di Cosmo Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions, Contin. Mech. Thermodyn. ( Jun 2018 )

[8] I. Sakellari; E. Kabouraki; D. Gray; V. Purlys; C. Fotakis; A. Pikulin; N. Bityurin; M. Vamvakaki; M. Farsari Diffusion-assisted high-resolution direct femtosecond laser writing, ACS Nano, Volume 6 (2012) no. 3, pp. 2302-2311

[9] A. Ovsianikov; S.Z. Xiao; M. Farsari; M. Vamvakaki; C. Fotakis; B.N. Chichkov Shrinkage of microstructures produced by two-photon polymerization of zr-based hybrid photosensitive materials, Opt. Express, Volume 17 (2009), pp. 2143-2148

[10] F. Claeyssens; E.A. Hasan; A. Gaidukeviciute; D.S. Achilleos; A. Ranella; C. Reinhardt; A. Ovsianikov; X. Shizhou; C. Fotakis; M. Vamvakaki; B.N. Chichkov; M. Farsari Three-dimensional biodegradable structures fabricated by two-photon polymerization, Langmuir, Volume 25 ( 03 2009 ) no. 5, pp. 3219-3223

[11] I. Sakellari; A. Gaidukeviciute; A. Giakoumaki; D. Gray; C. Fotakis; M. Farsari; M. Vamvakaki; C. Reinhardt; A. Ovsianikov; B.N. Chichkov Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication, Appl. Phys. A, Volume 100 (2010) no. 2, pp. 359-364

[12] L.R. Meza; S. Das; J.R. Greer Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science, Volume 345 (2014) no. 6202, pp. 1322-1326

[13] L.R. Meza; G.P. Phlipot; C.M. Portela; A. Maggi; L.C. Montemayor; A. Comella; D.M. Kochmann; J.R. Greer Reexamining the mechanical property space of three-dimensional lattice architectures, Acta Mater., Volume 140 (2017), pp. 424-432

[14] S. Pathak; Z.G. Cambaz; S.R. Kalidindi; J.G. Swadener; Y. Gogotsi Viscoelasticity and high buckling stress of dense carbon nanotube brushes, Carbon, Volume 47 (2009) no. 8, pp. 1969-1976

[15] E. Turco; M. Golaszewski; A. Cazzani; N.L. Rizzi Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model, Mech. Res. Commun., Volume 76 (2016), pp. 51-56

[16] E. Turco; K. Barcz; M. Pawlikowski; N.L. Rizzi Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations, Z. Angew. Math. Phys., Volume 67 (2016) no. 122, pp. 1-16

[17] E. Turco; K. Barcz; N.L. Rizzi Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence, Z. Angew. Math. Phys., Volume 67 (2016) no. 123, pp. 1-16

[18] E. Turco; M. Golaszewski; I. Giorgio; F. D'Annibale Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations, Composites, Part B, Eng., Volume 118 (2017), pp. 1-14

[19] J. Niiranen; V. Balobanov; J. Kiendl; S.B. Hosseini Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models, Math. Mech. Solids, Volume 24 (2019) no. 1, pp. 312-335

[20] L. Greco; M. Cuomo B-Spline interpolation of Kirchhoff–Love space rods, Comput. Methods Appl. Mech. Eng., Volume 256 (2013), pp. 251-269

[21] E. Turco; F. dell'Isola; N.L. Rizzi; R. Grygoruk; W.H. Müller; C. Liebold Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence, Mech. Res. Commun., Volume 76 (2016), pp. 86-90

[22] L. Placidi; E. Barchiesi Energy approach to brittle fracture in strain-gradient modelling, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 474 (2018) no. 20170878, pp. 1-19

[23] E. Turco; N.L. Rizzi Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields, Mech. Res. Commun., Volume 77 (2016), pp. 65-69

[24] E. Turco; A. Misra; M. Pawlikowski; F. dell'Isola; F. Hild Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments, Int. J. Solids Struct., Volume 147 ( August 2018 ), pp. 94-109

[25] I. Giorgio; N.L. Rizzi; E. Turco Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 473 ( November 2017 ) no. 20170636, pp. 1-21

[26] E. Turco Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional Elastica, Contin. Mech. Thermodyn., Volume 30 ( September 2018 ) no. 5, pp. 1039-1057

[27] V.A. Eremeyev; H. Altenbach Shell-Like Structures, Springer International Publishing, 2017

[28] L. Placidi; U. Andreaus; A. Della Corte; T. Lekszycki Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients, Z. Angew. Math. Phys., Volume 66 (2015) no. 6, pp. 3699-3725

[29] I. Giorgio Numerical identification procedure between a micro Cauchy model and a macro second gradient model for planar pantographic structures, Z. Angew. Math. Mech., Volume 67 (2016) no. 95, pp. 1-17

[30] J.-J. Alibert; P. Seppecher; F. dell'Isola Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, Volume 8 (2003) no. 1, pp. 51-73

[31] J.-J. Alibert; A. Della Corte Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof, Z. Angew. Math. Phys., Volume 66 (2015) no. 5, pp. 2855-2870

[32] J.-J. Alibert; A. Della Corte; I. Giorgio; A. Battista Extensional elastica in large deformation as Γ-limit of a discrete 1D mechanical system, Z. Angew. Math. Phys., Volume 68 (2017) no. 42

[33] F. dell'Isola; P. Seppecher; J.J. Alibert; T. Lekszycki; R. Grygoruk; M. Pawlikowski; D.J. Steigmann; I. Giorgio; U. Andreaus; E. Turco; M. Gołaszewski; N. Rizzi; C. Boutin; V.A. Eremeyev; A. Misra; L. Placidi; E. Barchiesi; L. Greco; M. Cuomo; A. Cazzani; A. Della Corte; A. Battista; D. Scerrato; I. Zurba Eremeeva; Y. Rahali; J.-F. Ganghoffer; W. Muller; G. Ganzosch; M. Spagnuolo; A. Pfaff; K. Barcz; K. Hoschke; J. Neggers; F. Hild Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Contin. Mech. Thermodyn. (2018) | DOI

Cited by Sources:

Comments - Policy