We derive several models of thin plates equipped with a periodic distribution of stiffeners. Depending on the orders of magnitude of the different parameters involved, diverse situations arise, from classical Kirchhoff–Love behaviour with additional energy term to full rigidification.
Accepté le :
Publié le :
Christian Licht 1, 2, 3 ; Thibaut Weller 1
@article{CRMECA_2019__347_8_555_0, author = {Christian Licht and Thibaut Weller}, title = {Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners}, journal = {Comptes Rendus. M\'ecanique}, pages = {555--560}, publisher = {Elsevier}, volume = {347}, number = {8}, year = {2019}, doi = {10.1016/j.crme.2019.07.001}, language = {en}, }
TY - JOUR AU - Christian Licht AU - Thibaut Weller TI - Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners JO - Comptes Rendus. Mécanique PY - 2019 SP - 555 EP - 560 VL - 347 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2019.07.001 LA - en ID - CRMECA_2019__347_8_555_0 ER -
Christian Licht; Thibaut Weller. Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners. Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 555-560. doi : 10.1016/j.crme.2019.07.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.07.001/
[1] An asymptotic Reissner–Mindlin plate model, C. R. Mecanique, Volume 346 (2018), pp. 432-438
[2] Mathematical Models for Elastic Structures, Cambridge University Press, Cambridge, UK, 1997
[3] Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, Elsevier, 1997
[4] Nonlinear boundary conditions in Kirchhoff–Love plate theory, J. Elast., Volume 96 (2009), pp. 57-79
[5] Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media, Discrete Contin. Dyn. Syst., Ser. S, Volume 12 (2019), pp. 1709-1741
[6] Asymptotic model of linearly visco-elastic Kelvin–Voigt type plates via Trotter theory, Adv. Differ. Equ., Volume 186 (2019) | DOI
Cité par Sources :
Commentaires - Politique