We derive several models of thin plates equipped with a periodic distribution of stiffeners. Depending on the orders of magnitude of the different parameters involved, diverse situations arise, from classical Kirchhoff–Love behaviour with additional energy term to full rigidification.
Accepted:
Published online:
Christian Licht 1, 2, 3; Thibaut Weller 1
@article{CRMECA_2019__347_8_555_0, author = {Christian Licht and Thibaut Weller}, title = {Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners}, journal = {Comptes Rendus. M\'ecanique}, pages = {555--560}, publisher = {Elsevier}, volume = {347}, number = {8}, year = {2019}, doi = {10.1016/j.crme.2019.07.001}, language = {en}, }
TY - JOUR AU - Christian Licht AU - Thibaut Weller TI - Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners JO - Comptes Rendus. Mécanique PY - 2019 SP - 555 EP - 560 VL - 347 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2019.07.001 LA - en ID - CRMECA_2019__347_8_555_0 ER -
Christian Licht; Thibaut Weller. Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners. Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 555-560. doi : 10.1016/j.crme.2019.07.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.07.001/
[1] An asymptotic Reissner–Mindlin plate model, C. R. Mecanique, Volume 346 (2018), pp. 432-438
[2] Mathematical Models for Elastic Structures, Cambridge University Press, Cambridge, UK, 1997
[3] Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, Elsevier, 1997
[4] Nonlinear boundary conditions in Kirchhoff–Love plate theory, J. Elast., Volume 96 (2009), pp. 57-79
[5] Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media, Discrete Contin. Dyn. Syst., Ser. S, Volume 12 (2019), pp. 1709-1741
[6] Asymptotic model of linearly visco-elastic Kelvin–Voigt type plates via Trotter theory, Adv. Differ. Equ., Volume 186 (2019) | DOI
Cited by Sources:
Comments - Policy