Comptes Rendus
Contact mechanism between dissimilar materials under plastic deformation
Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 588-600.

The description of the new contact mechanism between dissimilar materials during joint plastic deformation is proposed in this paper. To analyze the process of joint deformation of composite material layers, a multi-stage analytical model was developed based on the study of the contact interaction between the surfaces of the materials to be bonded using the slip line method. When mathematical simulation of the process of joint deformation of dissimilar materials, the influence of the geometrical surface profile of a harder layer of a composite, as a more significant factor, was estimated. For the entire range of influence of the investigated geometrical surface profile of a harder material of a composite, the final forming and stress state parameters in its intermediate zone were determined. To verify the analytical model, computer simulation of the process of joint deformation of composite material layers by the finite element method in two-dimensional formulation was carried out. The comparison of both solutions has confirmed the adequacy of the results obtained in the mathematical simulation. The theoretical model can be used in the development of bonding mechanisms between dissimilar materials, in the development of manufacturing technologies of new clad composite materials, as well as in the analysis and improvement of the existing manufacturing technologies of clad composite materials.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.07.002
Mots clés : Clad metal composites, Joint deformation, Cold roll bonding, Contact surface, Dissimilar materials bonding, Interlayer boundary
Denis Salikhyanov 1, 2

1 Institute of New Materials and Technologies, Ural Federal University, 620002 Ekaterinburg, Russian Federation
2 Institute of Engineering Science, Ural Branch of The Russian Academy of Sciences, 620049 Ekaterinburg, Russian Federation
@article{CRMECA_2019__347_8_588_0,
     author = {Denis Salikhyanov},
     title = {Contact mechanism between dissimilar materials under plastic deformation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {588--600},
     publisher = {Elsevier},
     volume = {347},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crme.2019.07.002},
     language = {en},
}
TY  - JOUR
AU  - Denis Salikhyanov
TI  - Contact mechanism between dissimilar materials under plastic deformation
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 588
EP  - 600
VL  - 347
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2019.07.002
LA  - en
ID  - CRMECA_2019__347_8_588_0
ER  - 
%0 Journal Article
%A Denis Salikhyanov
%T Contact mechanism between dissimilar materials under plastic deformation
%J Comptes Rendus. Mécanique
%D 2019
%P 588-600
%V 347
%N 8
%I Elsevier
%R 10.1016/j.crme.2019.07.002
%G en
%F CRMECA_2019__347_8_588_0
Denis Salikhyanov. Contact mechanism between dissimilar materials under plastic deformation. Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 588-600. doi : 10.1016/j.crme.2019.07.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.07.002/

[1] R.-I. Mori; N. Bay; L. Fratini et al. CIRP Ann., 62 (2013), pp. 673-694

[2] S.V. Gladkovskii; T.A. Trunina; E.A. Kokovikhin et al. Met. Sci. Heat Treat., 55 (2013) no. 1–2, pp. 3-7

[3] M. Akdesir; D. Zhou; F. Foadian; H. Palkowski Int. J. Eng. Res. Sci., 2-1 (2016), pp. 169-177

[4] M. Movahedi; A.H. Kokabi; S.M. Seyed Reihani Mater. Des., 32 (2011), pp. 3143-3149

[5] M. Kleiner; M. Geiger; A. Klaus CIRP Ann., 52 (2003) no. 2, pp. 259-262

[6] J.-S. Lee; H.-T. Son; K.-Y. Lee et al. Adv. Mater. Res., 26–28 (2007), pp. 409-412

[7] M. Jafarian; M.S. Rizi; M. Jafarian Mater. Sci. Eng. A, 666 (2016), pp. 372-379

[8] M.J. Fernandus; T. Senthilkumar; V. Balasubramanian Mater. Des., 32 (2011), pp. 1651-1656

[9] R. Uscinowicz Composites, Part B, 44 (2013), pp. 344-356

[10] C.-Y. Chen; H.-L. Chen; W.-S. Hwang Mater. Trans., 47 (2006) no. 4, pp. 1232-1239

[11] K. Ozel; M. Sahin; A. Akdogan Stroj. Vestn., J. Mech. Eng., 54 (2008) no. 11, pp. 796-806

[12] T. Koseki; J. Inoue; S. Nambu Mater. Trans., 55 (2014) no. 2, pp. 227-237

[13] K.-I. Mori Adv. Mater. Res., 966–967 (2014), pp. 29-47

[14] L.M. Alves; C.M.A. Silva; P.A.F. Martins Key Eng. Mater., 767 (2018), pp. 25-41

[15] J. Liu; M. Li; S. Sheu et al. Mater. Sci. Eng. A, 479 (2008), pp. 45-57

[16] A. Mikloweit; M. Bambach; M. Pietryga; G. Hirt Adv. Mater. Res., 966–967 (2014), pp. 481-488

[17] A. Wang; O. Ohashi; K. Ueno Mater. Trans., 47 (2006), pp. 179-184

[18] J.M. Parks Weld. J., Suppl., 32 (1953), pp. 209-222

[19] C. Zhang; H. Li; M. Li Vacuum, 137 (2017), pp. 49-55

[20] C. Wang; Y. Jiang; J. Xie Mater. Sci. Eng. A, 652 (2016), pp. 51-58

[21] H.D. Manesh; H.Sh. Shahabi J. Alloys Compd., 476 (2009), pp. 292-299

[22] M. Buchner; B. Buchner; B. Buchmayr et al. Int. J. Mater. Forming., 1 (2008), pp. 1279-1282

[23] R. Jamaati; M.R. Toroghinejad J. Mater. Eng. Perform., 20 (2011), pp. 191-197

[24] R.F. Tylecote; D. Howd; J.E. Furmidge Br. Weld. J., 1 (1958), pp. 21-38

[25] B.M. Agers; A.R. Singer Br. Weld. J., 11 (1964), pp. 313-319

[26] S. Reichelt; M. Schmidtchen; R. Kawalla 14th International Conference on Metal Forming “METAL FORMING 2012” SPL, 2012, pp. 867-870

[27] S. Reichelt; H. Saleh; M. Schmidtchen; R. Kawalla THERMEC 2013, 783–786 (2014), pp. 455-460

[28] M. Hosseini; M.H. Danesh Mater. Des., 81 (2015), pp. 122-132

[29] L. Da Silva; M. El-Sharif; C. Chisholm; S. Laidlaw METAL 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings, 2014, pp. 274-284

[30] K. Khaledi; S. Rezaei; S. Wulfinghoff; S. Reese Modeling of joining by plastic deformation using a bonding interface finite element, Int. J. Solids Struct., Volume 160 (2019), pp. 68-79

[31] N. Bay J. Eng. Ind., 101 (1979), pp. 121-127

[32] P.K. Wright; D.A. Snow; C.K. Tay Met. Technol., 5 (1978) no. 1, pp. 24-31

[33] L.R. Vaidyanath; M.G. Nicholas; D.R. Milner Br. Weld. J., 6 (1959), pp. 13-28

[34] W. Zhang; N. Bay CIRP Ann., 45 (1996), pp. 215-220

[35] H.R. Madaah-Hosseini; A.H. Kokabi Mater. Sci. Eng. A, 335 (2002) no. 1–2, pp. 186-190

[36] N.V. Govindaraj; S. Lauvdal; B. Holmedal J. Mater. Process. Technol., 213 (2013) no. 6, pp. 955-960

[37] D.R. Cooper; J.M. Allwood J. Mater. Process. Technol., 214 (2014), pp. 2576-2592

[38] K. Khaledi; S. Rezaei; S. Wulfinghoff; S. Reese C. R. Mecanique, 346 (2018), pp. 743-755

[39] A.G. Kobelev et al. Manufacturing of Clad Composite Materials, Intermet Engineering, Moscow, 2002 (in Russian)

[40] A. Almansour; M. Azizi; A.M. Jesri; S. Entakly Int. J. Acad. Sci. Res., 3 (2015) no. 4, pp. 37-45

[41] A.A. Bogatov; D.R. Salikhyanov Metallurgist, 60 (2017) no. 11–12, pp. 1175-1179

[42] A.P. Husu; Yu.R. Vitenberg; V.A. Pal'mov Roughness of Surfaces (Statistical-Theoretic Approach), Nauka, 1975 (in Russian)

[43] P.L. Menezes; Kishore; S.V. Kailas International Conference on Industrial Tribology, 2006, pp. 1-15

[44] Yu.N. Loginov Izv. Vysš. Učebn. Zaved., 5 (2004), pp. 29-33

[45] R. Hill The Mathematical Theory of Plasticity, Oxford University Press, 1998

[46] V.L. Kolmogorov Mechanics of Metal Forming, Metallurgy, Moscow, 1986 (in Russian)

[47] G.W. Stachowiak; A.W. Batchelor Engineering Tribology, 1993

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Transient rolling friction model for discrete element simulations of sphere assemblies

Matthew R. Kuhn

C. R. Méca (2014)


About shape and development of sterile bodies in phosphatic deposits

Armand Boujo

C. R. Géos (2002)


Criteria for the identification of ventifacts in the geological record: A review and new insights

Marc Durand; Sylvie Bourquin

C. R. Géos (2013)