Comptes Rendus
Some preliminary observations on a defect Navier–Stokes system
Comptes Rendus. Mécanique, Volume 347 (2019) no. 10, pp. 677-684.

Some implications of the simplest accounting of defects of compatibility in the velocity field on the structure of the classical Navier–Stokes equations are explored, leading to connections between classical elasticity, the elastic theory of defects, plasticity theory, and classical fluid mechanics.

Published online:
DOI: 10.1016/j.crme.2019.09.004
Keywords: Incompatibility, Velocity dislocation, Velocity disclinations, Defects, Navier–Stokes

Amit Acharya 1; Roger Fosdick 2

1 Department of Civil & Environmental Engineering, and Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2 Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
     author = {Amit Acharya and Roger Fosdick},
     title = {Some preliminary observations on a defect {Navier{\textendash}Stokes} system},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {677--684},
     publisher = {Elsevier},
     volume = {347},
     number = {10},
     year = {2019},
     doi = {10.1016/j.crme.2019.09.004},
     language = {en},
AU  - Amit Acharya
AU  - Roger Fosdick
TI  - Some preliminary observations on a defect Navier–Stokes system
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 677
EP  - 684
VL  - 347
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2019.09.004
LA  - en
ID  - CRMECA_2019__347_10_677_0
ER  - 
%0 Journal Article
%A Amit Acharya
%A Roger Fosdick
%T Some preliminary observations on a defect Navier–Stokes system
%J Comptes Rendus. Mécanique
%D 2019
%P 677-684
%V 347
%N 10
%I Elsevier
%R 10.1016/j.crme.2019.09.004
%G en
%F CRMECA_2019__347_10_677_0
Amit Acharya; Roger Fosdick. Some preliminary observations on a defect Navier–Stokes system. Comptes Rendus. Mécanique, Volume 347 (2019) no. 10, pp. 677-684. doi : 10.1016/j.crme.2019.09.004.

[1] E. Kröner Continuum theory of defects (R. Balian; M. Kléman; J.-P. Poirier, eds.), Physics of Defects, vol. 35, North-Holland, Amsterdam, 1981, pp. 217-315

[2] G. Weingarten Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi, Rend. R. Accad. Lincei, Cl. Sci. Fis. Mat. Nat., Ser. 5, Volume 10 (1901) no. 1, pp. 57-60

[3] D.H. Delphenich On the surface of discontinuity in the theory of elasticity for solid bodies (English translation of [2])

[4] V. Volterra Sur l'équilibre des corps élastiques multiplement connexes, Ann. Sci. Éc. Norm. Supér., Volume 24 (1907), pp. 401-517

[5] D.H. Delphenich On the equilibrium of multiply-connected elastic bodies (English translation of [4])

[6] A. Acharya On Weingarten–Volterra defects, J. Elast., Volume 134 (2019), pp. 79-101

[7] A. Acharya Fracture and singularities of the mass density gradient field, J. Elast., Volume 132 (2018), pp. 243-260

[8] A. Acharya Jump condition for GND evolution as a constraint on slip transmission at grain boundaries, Philos. Mag., Volume 87 (2007) no. 8–9, pp. 1349-1359

[9] K. Rektorys Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Company, 1977

[10] A. Acharya, R. Fosdick, Velocity dislocations in fluids: Incompatible flows, in preparation, 2019.

[11] M. Babic Average balance equations for granular materials, Int. J. Eng. Sci., Volume 35 (1997) no. 5, pp. 523-548

[12] A. Garg; A. Acharya; C.E. Maloney A study of conditions for dislocation nucleation in coarser-than-atomistic scale models, J. Mech. Phys. Solids, Volume 75 (2015), pp. 76-92

[13] C.A. Truesdell; R.A. Toupin The classical field theories, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Springer, 1960, pp. 226-858

[14] L.D. Landau; E.M. Lifshitz Fluid Mechanics, vol. 6, Pergamon Press, 1987

[15] U.S. Fjordholm; R. Käppeli; S. Mishra; E. Tadmor Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Found. Comput. Math., Volume 17 (2017) no. 3, pp. 763-827

[16] D. Bresch; B. Desjardins On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., Volume 87 (2007) no. 1, pp. 57-90

[17] U.S. Fjordholm; S. Lanthaler; S. Mishra Statistical solutions of hyperbolic conservation laws: foundations, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 2, pp. 809-849

[18] C.W. Bardos; E.S. Titi Mathematics and turbulence: where do we stand?, J. Turbul., Volume 14 (2013) no. 3, pp. 42-76

[19] J. Guillod; V. Šverák Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces, 2017 (arXiv preprint) | arXiv

[20] T. Buckmaster; V. Vicol Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. of Math. (2), Volume 189 (2019) no. 1, pp. 101-144

[21] C. De Lellis; L. Szekelyhidi On turbulence and geometry: from Nash to Onsager, Not. Amer. Math. Soc., Volume 66 (2019) no. 5, pp. 677-685

Cited by Sources:

Comments - Policy