Comptes Rendus
Direct numerical simulation of flexible molecules and data-driven molecular conformation
Comptes Rendus. Mécanique, Volume 347 (2019) no. 11, pp. 743-753.

The present work aims at performing a molecular dynamics modeling of suspensions composed of flexible linear molecules. Molecules are represented by a series of connected beads, whose dynamics is governed by three potentials: the extension potential affecting the elongation of segments connecting consecutive beads, the one governing the molecule bending and finally the Lennard-Jones describing the interaction of non-consecutive beads. A population of non-interacting molecules is simulated in elongation and shear flows for different flow and molecule parameters. The flow-induced conformation is analyzed in the different considered situations. Finally a model for predicting the evolution of the population conformation will be obtained by using deep-learning.

Published online:
DOI: 10.1016/j.crme.2019.11.001
Keywords: Flexible molecules, Direct numerical simulation, Molecular dynamics, Suspension, Deep-learning

Amine Ammar 1; Francisco Chinesta 2

1 LAMPA @ Arts et Métiers ParisTech, 2, boulevard du Ronceray, BP 93525, 49035 Angers cedex 01, France
2 ESI Group Chair @ PIMM, Arts et Métiers Institute of Technology, CNRS, CNAM, HESAM University, 151 boulevard de l'Hôpital, 75013 Paris, France
     author = {Amine Ammar and Francisco Chinesta},
     title = {Direct numerical simulation of flexible molecules and data-driven molecular conformation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {743--753},
     publisher = {Elsevier},
     volume = {347},
     number = {11},
     year = {2019},
     doi = {10.1016/j.crme.2019.11.001},
     language = {en},
AU  - Amine Ammar
AU  - Francisco Chinesta
TI  - Direct numerical simulation of flexible molecules and data-driven molecular conformation
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 743
EP  - 753
VL  - 347
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2019.11.001
LA  - en
ID  - CRMECA_2019__347_11_743_0
ER  - 
%0 Journal Article
%A Amine Ammar
%A Francisco Chinesta
%T Direct numerical simulation of flexible molecules and data-driven molecular conformation
%J Comptes Rendus. Mécanique
%D 2019
%P 743-753
%V 347
%N 11
%I Elsevier
%R 10.1016/j.crme.2019.11.001
%G en
%F CRMECA_2019__347_11_743_0
Amine Ammar; Francisco Chinesta. Direct numerical simulation of flexible molecules and data-driven molecular conformation. Comptes Rendus. Mécanique, Volume 347 (2019) no. 11, pp. 743-753. doi : 10.1016/j.crme.2019.11.001.

[1] C. Binetruy; F. Chinesta; R. Keunings Flows in Polymers, Reinforced Polymers and Composites. A Multiscale Approach, SpringerBriefs, Springer, 2015

[2] F. Chinesta; E. Abisset A Journey Around the Different Scales Involved in the Description of Matter and Complex Systems, SpringerBriefs, Springer, 2017

[3] G. Ianniruberto; G. Marrucci Flow-induced orientation and stretching of entangled polymers, Philos. Trans. R. Soc. Lond. A, Volume 361 (2003), pp. 677-688

[4] M. Doi; S.F. Edwards The Theory of Polymer Dynamics, Oxford Sciences Publications, 1986

[5] R.B. Bird; C.F. Curtiss; R.C. Armstrong; O. Hassager Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory, John Wiley & Sons, 1987

[6] M. Somasi; B. Khomami; N.J. Woo; J.S. Hur; E.S.G. Shaqfeh Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues, J. Non-Newton. Fluid Mech., Volume 108 (2002) no. 1–3, pp. 227-255

[7] G. Venkiteswaran; M. Junk A QMC approach for high dimensional Fokker-Planck equations modelling polymeric liquids, Math. Comput. Simul., Volume 68 (2005), pp. 43-56

[8] R. Winkler; P. Reineker; L. Harnau Models and equilibrium properties of stiff molecular chains, J. Chem. Phys., Volume 101 (1994) no. 9, pp. 8119-8129

[9] L. Harnau; R. Winkler; P. Reineker Dynamic structure factor of semiflexible macromolecules in dilute solution, J. Chem. Phys., Volume 104 (1996) no. 16, pp. 6255-6258

[10] W. Paul; G. Smith; D. Yoon Static and dynamic properties of a n-C100H202 melt from molecular dynamics simulations, Macromolecules, Volume 30 (1997), pp. 7772-7780

[11] T. Kreer; J. Baschnagel; M. Mueller; K. Binder Monte Carlo simulation of long chain polymer melts: crossover from Rouse to reptation dynamics, Macromolecules, Volume 34 (2001), pp. 1105-1117

[12] S. Krushev; W. Paul; G. Smith The role of internal rotational barriers in polymer melt chain dynamics, Macromolecules, Volume 35 (2002), pp. 4198-4203

[13] M. Bulacu; E. van der Gieesen Effect of bending and torsion rigidity on self-diffusion in polymer melts: a molecular-dynamics study, J. Chem. Phys., Volume 123 (2005)

[14] M.O. Steinhauser Static and dynamic scaling of semiflexible polymer chains – a molecular dynamics simulation study of single chains and meltsMech, Time-Depend. Mater., Volume 12 (2008), pp. 291-312

[15] M. Tanaskovic; L. Fagiano; C. Novara; M. Morari Data-driven control of nonlinear systems: an on-line direct approach, Automatica, Volume 75 (2017), pp. 1-10

[16] T. Duriez; S. Brunton; B.R. Noack Machine Learning Control-Taming Nonlinear Dynamics and Turbulence, Springer, 2017

[17] R.H. Shumway; D.S. Stoer Time series analysis and its applications, Stud. Inform. Control, Volume 9 (2000) no. 4, pp. 375-376

Cited by Sources:

Comments - Policy