Comptes Rendus
Numerical approaches on driven elastic interfaces in random media
[Approches numériques pour les interfaces élastiques en milieu aléatoire]
Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 641-650.

Nous discutons les principaux résultats obtenus sur les propriétés universelles de la dynamique des interfaces élastiques en milieu aléatoire. Une attention particulière sera dédiée à la relation entre la géométrie rugueuse de lʼinterface en mouvement et ses proprietés de transport collectif. Les approches numériques développées permettent de décrire les propriétés dʼéquilibre, la dynamique de reptation et la transition de dépiégeage de lʼinterface. Nous discutons aussi la pertinence de nos résultats dans les expériences sur la dynamique des parois.

We discuss the universal dynamics of elastic interfaces in quenched random media. We focus on the relation between the rough geometry and collective transport properties in driven steady-states. Specially devised numerical algorithms allow us to analyze the equilibrium, creep, and depinning regimes of motion in minimal models. The relevance of our results for understanding domain wall experiments is outlined.

Publié le :
DOI : 10.1016/j.crhy.2013.08.002
Keywords: Creep, Depinning, Disorder
Mot clés : Reptation, Dépiégeage, Desordre

Ezequiel E. Ferrero 1 ; Sebastian Bustingorry 1 ; Alejandro B. Kolton 1 ; Alberto Rosso 2

1 CONICET, Centro Atomico Bariloche, 8400 S. C. de Bariloche, Argentina
2 Université Paris-Sud, CNRS, LPTMS, UMR 8626, 91405 Orsay, France
@article{CRPHYS_2013__14_8_641_0,
     author = {Ezequiel E. Ferrero and Sebastian Bustingorry and Alejandro B. Kolton and Alberto Rosso},
     title = {Numerical approaches on driven elastic interfaces in random media},
     journal = {Comptes Rendus. Physique},
     pages = {641--650},
     publisher = {Elsevier},
     volume = {14},
     number = {8},
     year = {2013},
     doi = {10.1016/j.crhy.2013.08.002},
     language = {en},
}
TY  - JOUR
AU  - Ezequiel E. Ferrero
AU  - Sebastian Bustingorry
AU  - Alejandro B. Kolton
AU  - Alberto Rosso
TI  - Numerical approaches on driven elastic interfaces in random media
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 641
EP  - 650
VL  - 14
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.08.002
LA  - en
ID  - CRPHYS_2013__14_8_641_0
ER  - 
%0 Journal Article
%A Ezequiel E. Ferrero
%A Sebastian Bustingorry
%A Alejandro B. Kolton
%A Alberto Rosso
%T Numerical approaches on driven elastic interfaces in random media
%J Comptes Rendus. Physique
%D 2013
%P 641-650
%V 14
%N 8
%I Elsevier
%R 10.1016/j.crhy.2013.08.002
%G en
%F CRPHYS_2013__14_8_641_0
Ezequiel E. Ferrero; Sebastian Bustingorry; Alejandro B. Kolton; Alberto Rosso. Numerical approaches on driven elastic interfaces in random media. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 641-650. doi : 10.1016/j.crhy.2013.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.002/

[1] S. Lemerle; J. Ferré; C. Chappert; V. Mathet; T. Giamarchi; P. Le Doussal Domain wall creep in an Ising ultrathin magnetic film, Phys. Rev. Lett., Volume 80 (1998), p. 849

[2] M. Bauer; A. Mougin; J.-P. Jamet; V. Repain; J. Ferré; R.L. Stamps; H. Bernas; C. Chappert Deroughening of domain wall pairs by dipolar repulsion, Phys. Rev. Lett., Volume 94 (2005), p. 207211

[3] M. Yamanouchi; D. Chiba; F. Matsukura; T. Dietl; H. Ohno Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga, Mn)As, Phys. Rev. Lett., Volume 96 (2006), p. 096601

[4] P.J. Metaxas; J.-P. Jamet; A. Mougin; M. Cormier; J. Ferré; V. Baltz; B. Rodmacq; B. Dieny; R.L. Stamps Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett., Volume 99 (2007), p. 217208

[5] J.-C. Lee; K.-J. Kim; J. Ryu; K.-W. Moon; S.-J. Yun; G.-H. Gim; K.-S. Lee; K.-H. Shin; H.-W. Lee; S.-B. Choe Universality classes of magnetic domain wall motion, Phys. Rev. Lett., Volume 107 (2011), p. 067201

[6] J. Ferré; P.J. Metaxas; A. Mougin; J.-P. Jamet; J. Gorchon; V. Jeudy Universal magnetic domain wall dynamics in the presence of weak disorder, C. R. Physique, Volume 14 (2013) no. 8, pp. 651-666

[7] P. Paruch; T. Giamarchi; J.-M. Triscone Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 94 (2005), p. 197601

[8] P. Paruch; J.-M. Triscone High-temperature ferroelectric domain stability in epitaxial PbZr0.2Ti0.8O3 thin films, Appl. Phys. Lett., Volume 88 (2006), p. 162907

[9] T. Tybell; P. Paruch; T. Giamarchi; J.-M. Triscone Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 89 (2002), p. 097601

[10] J.Y. Jo; S.M. Yang; T.H. Kim; H.N. Lee; J.-G. Yoon; S. Park; Y. Jo; M.H. Jung; T.W. Noh Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films, Phys. Rev. Lett., Volume 102 (2009), p. 045701

[11] P. Paruch; A.B. Kolton; X. Hong; C.H. Ahn; T. Giamarchi Thermal quench effects on ferroelectric domain walls, Phys. Rev. B, Volume 85 (2012), p. 214115

[12] J. Guyonnet; E. Agoritsas; S. Bustingorry; T. Giamarchi; P. Paruch Multiscaling analysis of ferroelectric domain wall roughness, Phys. Rev. Lett., Volume 109 (2012), p. 147601

[13] P. Paruch; J. Guyonnet Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces, C. R. Physique, Volume 14 (2013) no. 8, pp. 667-684

[14] S. Moulinet; A. Rosso; W. Krauth; E. Rolley Width distribution of contact lines on a disordered substrate, Phys. Rev. E, Volume 69 (2004), p. 035103(R)

[15] P. Le Doussal; K.J. Wiese; S. Moulinet; E. Rolley Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, Europhys. Lett., Volume 87 (2009), p. 56001

[16] E. Bouchaud; J.-P. Bouchaud; D.S. Fisher; S. Ramanathan; J.R. Rice Can crack front waves explain the roughness of cracks?, J. Mech. Phys. Solids, Volume 50 (2002), p. 1703

[17] D. Bonamy; S. Santucci; L. Ponson Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition, Phys. Rev. Lett., Volume 101 (2008), p. 045501

[18] E.A. Jagla; A.B. Kolton A mechanism for spatial and temporal earthquake clustering, J. Geophys. Res., Volume 115 (2010), p. B05312

[19] P. Chauve; T. Giamarchi; P. Le Doussal Creep and depinning in disordered media, Phys. Rev. B, Volume 62 (2000), p. 6241

[20] T. Giamarchi; S. Bhattacharya High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy (C. Berthier et al., eds.), Springer-Verlag, Berlin, 2002, p. 314

[21] T. Nattermann; S. Brazovskii Pinning and sliding of driven elastic systems: from domain walls to charge density waves, Adv. Phys., Volume 53 (2004), p. 177

[22] H. Gao; J.R. Rice A first-order perturbation analysis of crack trapping by arrays of obstacles, J. Appl. Mech., Volume 56 (1989), p. 828

[23] A. Tanguy; M. Gounelle; S. Roux From individual to collective pinning: Effect of long-range elastic interactions, Phys. Rev. E, Volume 58 (1998), pp. 1577-1590

[24] D. Bonamy; E. Bouchaud Failure of heterogeneous materials: A dynamic phase transition?, Phys. Rep., Volume 498 (2011), p. 1

[25] M. Alava; P.K.V.V. Nukalaz; S. Zapperi Statistical models of fracture, Adv. Phys., Volume 55 (2006), p. 349

[26] J.F. Joanny; P.-G. de Gennes A model for contact angle hysteresis, J. Chem. Phys., Volume 81 (1984), p. 552

[27] P. Le Doussal; K.J. Wiese; S. Moulinet; E. Rolley Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, Europhys. Lett., Volume 87 (2009) no. 5, p. 56001

[28] A. Rosso; W. Krauth Origin of the roughness exponent in elastic strings at the depinning threshold, Phys. Rev. Lett., Volume 87 (2001), p. 187002

[29] L.-H. Tang; M. Kardar; D. Dhar Driven depinning in anisotropic media, Phys. Rev. Lett., Volume 74 (1995) no. 6, pp. 920-923

[30] Image of the magnetic contrast in a Pt/Co/Pt film obtained by MOKE, Courtesy J. Ferré.

[31] E. Agoritsas; V. Lecomte; T. Giamarchi Temperature-induced crossovers in the static roughness of a one-dimensional interface, Phys. Rev. B, Volume 82 (2010), p. 184207

[32] E. Agoritsas; V. Lecomte; T. Giamarchi Disordered elastic systems and one-dimensional interfaces, Physica B, Volume 407 (2012), p. 1725

[33] E. Agoritsas; V. Lecomte; T. Giamarchi Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation, Phys. Rev. E, Volume 87 (2013), p. 042406

[34] E. Agoritsas; V. Lecomte; T. Giamarchi Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation: Numerical study, Phys. Rev. E, Volume 87 (2013), p. 062405

[35] B. Drossel; M. Kardar Scaling of energy barriers for flux lines and other random systems, Phys. Rev. E, Volume 52 (1995), pp. 4841-4852

[36] A.B. Kolton; A. Rosso; T. Giamarchi; W. Krauth Dynamics below the depinning threshold in disordered elastic systems, Phys. Rev. Lett., Volume 97 (2006), p. 057001

[37] A.B. Kolton; A. Rosso; T. Giamarchi; W. Krauth Creep dynamics of elastic manifolds via exact transition pathways, Phys. Rev. B, Volume 79 (2009), p. 184207

[38] L.B. Ioffe; V.M. Vinokur Dynamics of interfaces and dislocations in disordered media, J. Phys. C, Volume 20 (1987), p. 6149

[39] T. Nattermann Interface roughening in systems with quenched random impurities, Europhys. Lett., Volume 4 (1987) no. 11, p. 1241

[40] D.S. Fisher; D.A. Huse Directed paths in a random potential, Phys. Rev. B, Volume 43 (1991), p. 10728

[41] S.F. Edwards; D.R. Wilkinson The surface statistics of a granular aggregate, Proc. R. Soc. A, Volume 381 (1982), p. 17

[42] J. Krug Origins of scale invariance in growth processes, Adv. Phys., Volume 46 (1997), p. 139

[43] D.S. Fisher Sliding charge-density waves as a dynamic critical phenomenon, Phys. Rev. B, Volume 31 (1985), p. 1396

[44] D.A. Huse; C.L. Henley Pinning and roughening of domain walls in Ising systems due to random impurities, Phys. Rev. Lett., Volume 54 (1985), pp. 2708-2711

[45] L.W. Chen; M.C. Marchetti Interface motion in random media at finite temperature, Phys. Rev. B, Volume 51 (1995), p. 6296

[46] A.B. Kolton; A. Rosso; T. Giamarchi Creep motion of an elastic string in a random potential, Phys. Rev. Lett., Volume 94 (2005), p. 047002

[47] A. Rosso; W. Krauth Roughness at the depinning threshold for a long-range elastic string, Phys. Rev. E, Volume 65 (2002), p. 025101

[48] E.E. Ferrero; S. Bustingorry; A.B. Kolton Nonsteady relaxation and critical exponents at the depinning transition, Phys. Rev. E, Volume 87 (2013), p. 032122

[49] S. Bustingorry; A.B. Kolton; T. Giamarchi Thermal rounding of the depinning transition, Europhys. Lett., Volume 81 (2008), p. 26005

[50] S. Bustingorry; A.B. Kolton; T. Giamarchi Thermal rounding exponent of the depinning transition of a string in a random medium, Phys. Rev. E, Volume 85 (2012), p. 021144

[51] M. Kardar; Y.C. Zhang Scaling of directed polymers in random media, Phys. Rev. Lett., Volume 58 (1987), p. 2087

[52] M. Kardar Roughening by impurities at finite temperatures, Phys. Rev. Lett., Volume 55 (1985), p. 2923

[53] S. Bustingorry; P. Le Doussal; A. Rosso Universal high-temperature regime of pinned elastic objects, Phys. Rev. B, Volume 82 (2010), p. 140201

[54] M. Prähofer; H. Spohn Scale invariance of the PNG droplet and the airy process, J. Stat. Phys., Volume 108 (2002), p. 1071

[55] E. Agoritsas; S. Bustingorry; V. Lecomte; G. Schehr; T. Giamarchi Finite-temperature and finite-time scaling of the directed polymer free energy with respect to its geometrical fluctuations, Phys. Rev. E, Volume 86 (2012), p. 031144

[56] A.B. Kolton; A. Rosso; T. Giamarchi Nonequilibrium relaxation of an elastic string in a random potential, Phys. Rev. Lett., Volume 95 (2005), p. 180604

[57] A.A. Middleton Asymptotic uniqueness of the sliding state for charge–density waves, Phys. Rev. Lett., Volume 68 (1992), p. 670

[58] C.J. Bolech; A. Rosso Universal statistics of the critical depinning force of elastic systems in random media, Phys. Rev. Lett., Volume 93 (2004), p. 125701

[59] A. Rosso; P. Le Doussal; K.J. Wiese Numerical calculation of the functional renormalization group fixed-point functions at the depinning transition, Phys. Rev. B, Volume 75 (2007), p. 220201(R)

[60] H.K. Janssen; B. Schaub; B. Schmittmann New universal short-time scaling behavior of critical relaxation processes, Z. Phys. B, Condens. Matter, Volume 73 (1989), p. 539

[61] B. Zheng Computer Simulation Studies in Condensed-Matter Physics XVI (D.P. Landau et al., eds.), Springer-Verlag, Berlin, Heidelberg, 2006, p. 25 (Ch. 4)

[62] E.V. Albano; M.A. Bab; G. Baglietto; R.A. Borzi; T.S. Grigera; E.S. Loscar; D.E. Rodriguez; M.L. Rubio Puzzo; G.P. Saracco Study of phase transitions from short-time non-equilibrium behaviour, Rep. Prog. Phys., Volume 74 (2011), p. 026501

[63] A.B. Kolton; A. Rosso; E.V. Albano; T. Giamarchi Short-time relaxation of a driven elastic string in a random medium, Phys. Rev. B, Volume 74 (2006), p. 140201

[64] A.B. Kolton; G. Schehr; P.L. Doussal Universal nonstationary dynamics at the depinning transition, Phys. Rev. Lett., Volume 103 (2009), p. 160602

[65] A.A. Middleton Thermal rounding of the charge-density-wave depinning transition, Phys. Rev. B, Volume 45 (1992), p. 9465

[66] U. Nowak; K.D. Usadel Influence of temperature on the depinning transition of driven interfaces, Europhys. Lett., Volume 44 (1998), p. 634

[67] S. Bustingorry; A.B. Kolton; T. Giamarchi Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films, Phys. Rev. B, Volume 85 (2012), p. 214416

[68] V. Repain; M. Bauer; J.-P. Jamet; J. Ferré; A. Mougin; C. Chappert; H. Bernas Creep motion of a magnetic wall: Avalanche size divergence, Europhys. Lett., Volume 68 (2004), p. 460

[69] V. Lecomte; S.E. Barnes; J.-P. Eckmann; T. Giamarchi Depinning of domain walls with an internal degree of freedom, Phys. Rev. B, Volume 80 (2009), p. 054413

Cité par Sources :

Commentaires - Politique