[Approches numériques pour les interfaces élastiques en milieu aléatoire]
Nous discutons les principaux résultats obtenus sur les propriétés universelles de la dynamique des interfaces élastiques en milieu aléatoire. Une attention particulière sera dédiée à la relation entre la géométrie rugueuse de lʼinterface en mouvement et ses proprietés de transport collectif. Les approches numériques développées permettent de décrire les propriétés dʼéquilibre, la dynamique de reptation et la transition de dépiégeage de lʼinterface. Nous discutons aussi la pertinence de nos résultats dans les expériences sur la dynamique des parois.
We discuss the universal dynamics of elastic interfaces in quenched random media. We focus on the relation between the rough geometry and collective transport properties in driven steady-states. Specially devised numerical algorithms allow us to analyze the equilibrium, creep, and depinning regimes of motion in minimal models. The relevance of our results for understanding domain wall experiments is outlined.
Mot clés : Reptation, Dépiégeage, Desordre
Ezequiel E. Ferrero 1 ; Sebastian Bustingorry 1 ; Alejandro B. Kolton 1 ; Alberto Rosso 2
@article{CRPHYS_2013__14_8_641_0, author = {Ezequiel E. Ferrero and Sebastian Bustingorry and Alejandro B. Kolton and Alberto Rosso}, title = {Numerical approaches on driven elastic interfaces in random media}, journal = {Comptes Rendus. Physique}, pages = {641--650}, publisher = {Elsevier}, volume = {14}, number = {8}, year = {2013}, doi = {10.1016/j.crhy.2013.08.002}, language = {en}, }
TY - JOUR AU - Ezequiel E. Ferrero AU - Sebastian Bustingorry AU - Alejandro B. Kolton AU - Alberto Rosso TI - Numerical approaches on driven elastic interfaces in random media JO - Comptes Rendus. Physique PY - 2013 SP - 641 EP - 650 VL - 14 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2013.08.002 LA - en ID - CRPHYS_2013__14_8_641_0 ER -
%0 Journal Article %A Ezequiel E. Ferrero %A Sebastian Bustingorry %A Alejandro B. Kolton %A Alberto Rosso %T Numerical approaches on driven elastic interfaces in random media %J Comptes Rendus. Physique %D 2013 %P 641-650 %V 14 %N 8 %I Elsevier %R 10.1016/j.crhy.2013.08.002 %G en %F CRPHYS_2013__14_8_641_0
Ezequiel E. Ferrero; Sebastian Bustingorry; Alejandro B. Kolton; Alberto Rosso. Numerical approaches on driven elastic interfaces in random media. Comptes Rendus. Physique, Volume 14 (2013) no. 8, pp. 641-650. doi : 10.1016/j.crhy.2013.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.08.002/
[1] Domain wall creep in an Ising ultrathin magnetic film, Phys. Rev. Lett., Volume 80 (1998), p. 849
[2] Deroughening of domain wall pairs by dipolar repulsion, Phys. Rev. Lett., Volume 94 (2005), p. 207211
[3] Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga, Mn)As, Phys. Rev. Lett., Volume 96 (2006), p. 096601
[4] Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett., Volume 99 (2007), p. 217208
[5] Universality classes of magnetic domain wall motion, Phys. Rev. Lett., Volume 107 (2011), p. 067201
[6] Universal magnetic domain wall dynamics in the presence of weak disorder, C. R. Physique, Volume 14 (2013) no. 8, pp. 651-666
[7] Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 94 (2005), p. 197601
[8] High-temperature ferroelectric domain stability in epitaxial PbZr0.2Ti0.8O3 thin films, Appl. Phys. Lett., Volume 88 (2006), p. 162907
[9] Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films, Phys. Rev. Lett., Volume 89 (2002), p. 097601
[10] Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films, Phys. Rev. Lett., Volume 102 (2009), p. 045701
[11] Thermal quench effects on ferroelectric domain walls, Phys. Rev. B, Volume 85 (2012), p. 214115
[12] Multiscaling analysis of ferroelectric domain wall roughness, Phys. Rev. Lett., Volume 109 (2012), p. 147601
[13] Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces, C. R. Physique, Volume 14 (2013) no. 8, pp. 667-684
[14] Width distribution of contact lines on a disordered substrate, Phys. Rev. E, Volume 69 (2004), p. 035103(R)
[15] Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, Europhys. Lett., Volume 87 (2009), p. 56001
[16] Can crack front waves explain the roughness of cracks?, J. Mech. Phys. Solids, Volume 50 (2002), p. 1703
[17] Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition, Phys. Rev. Lett., Volume 101 (2008), p. 045501
[18] A mechanism for spatial and temporal earthquake clustering, J. Geophys. Res., Volume 115 (2010), p. B05312
[19] Creep and depinning in disordered media, Phys. Rev. B, Volume 62 (2000), p. 6241
[20] High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy (C. Berthier et al., eds.), Springer-Verlag, Berlin, 2002, p. 314
[21] Pinning and sliding of driven elastic systems: from domain walls to charge density waves, Adv. Phys., Volume 53 (2004), p. 177
[22] A first-order perturbation analysis of crack trapping by arrays of obstacles, J. Appl. Mech., Volume 56 (1989), p. 828
[23] From individual to collective pinning: Effect of long-range elastic interactions, Phys. Rev. E, Volume 58 (1998), pp. 1577-1590
[24] Failure of heterogeneous materials: A dynamic phase transition?, Phys. Rep., Volume 498 (2011), p. 1
[25] Statistical models of fracture, Adv. Phys., Volume 55 (2006), p. 349
[26] A model for contact angle hysteresis, J. Chem. Phys., Volume 81 (1984), p. 552
[27] Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator, Europhys. Lett., Volume 87 (2009) no. 5, p. 56001
[28] Origin of the roughness exponent in elastic strings at the depinning threshold, Phys. Rev. Lett., Volume 87 (2001), p. 187002
[29] Driven depinning in anisotropic media, Phys. Rev. Lett., Volume 74 (1995) no. 6, pp. 920-923
[30] Image of the magnetic contrast in a Pt/Co/Pt film obtained by MOKE, Courtesy J. Ferré.
[31] Temperature-induced crossovers in the static roughness of a one-dimensional interface, Phys. Rev. B, Volume 82 (2010), p. 184207
[32] Disordered elastic systems and one-dimensional interfaces, Physica B, Volume 407 (2012), p. 1725
[33] Static fluctuations of a thick one-dimensional interface in the directed polymer formulation, Phys. Rev. E, Volume 87 (2013), p. 042406
[34] Static fluctuations of a thick one-dimensional interface in the directed polymer formulation: Numerical study, Phys. Rev. E, Volume 87 (2013), p. 062405
[35] Scaling of energy barriers for flux lines and other random systems, Phys. Rev. E, Volume 52 (1995), pp. 4841-4852
[36] Dynamics below the depinning threshold in disordered elastic systems, Phys. Rev. Lett., Volume 97 (2006), p. 057001
[37] Creep dynamics of elastic manifolds via exact transition pathways, Phys. Rev. B, Volume 79 (2009), p. 184207
[38] Dynamics of interfaces and dislocations in disordered media, J. Phys. C, Volume 20 (1987), p. 6149
[39] Interface roughening in systems with quenched random impurities, Europhys. Lett., Volume 4 (1987) no. 11, p. 1241
[40] Directed paths in a random potential, Phys. Rev. B, Volume 43 (1991), p. 10728
[41] The surface statistics of a granular aggregate, Proc. R. Soc. A, Volume 381 (1982), p. 17
[42] Origins of scale invariance in growth processes, Adv. Phys., Volume 46 (1997), p. 139
[43] Sliding charge-density waves as a dynamic critical phenomenon, Phys. Rev. B, Volume 31 (1985), p. 1396
[44] Pinning and roughening of domain walls in Ising systems due to random impurities, Phys. Rev. Lett., Volume 54 (1985), pp. 2708-2711
[45] Interface motion in random media at finite temperature, Phys. Rev. B, Volume 51 (1995), p. 6296
[46] Creep motion of an elastic string in a random potential, Phys. Rev. Lett., Volume 94 (2005), p. 047002
[47] Roughness at the depinning threshold for a long-range elastic string, Phys. Rev. E, Volume 65 (2002), p. 025101
[48] Nonsteady relaxation and critical exponents at the depinning transition, Phys. Rev. E, Volume 87 (2013), p. 032122
[49] Thermal rounding of the depinning transition, Europhys. Lett., Volume 81 (2008), p. 26005
[50] Thermal rounding exponent of the depinning transition of a string in a random medium, Phys. Rev. E, Volume 85 (2012), p. 021144
[51] Scaling of directed polymers in random media, Phys. Rev. Lett., Volume 58 (1987), p. 2087
[52] Roughening by impurities at finite temperatures, Phys. Rev. Lett., Volume 55 (1985), p. 2923
[53] Universal high-temperature regime of pinned elastic objects, Phys. Rev. B, Volume 82 (2010), p. 140201
[54] Scale invariance of the PNG droplet and the airy process, J. Stat. Phys., Volume 108 (2002), p. 1071
[55] Finite-temperature and finite-time scaling of the directed polymer free energy with respect to its geometrical fluctuations, Phys. Rev. E, Volume 86 (2012), p. 031144
[56] Nonequilibrium relaxation of an elastic string in a random potential, Phys. Rev. Lett., Volume 95 (2005), p. 180604
[57] Asymptotic uniqueness of the sliding state for charge–density waves, Phys. Rev. Lett., Volume 68 (1992), p. 670
[58] Universal statistics of the critical depinning force of elastic systems in random media, Phys. Rev. Lett., Volume 93 (2004), p. 125701
[59] Numerical calculation of the functional renormalization group fixed-point functions at the depinning transition, Phys. Rev. B, Volume 75 (2007), p. 220201(R)
[60] New universal short-time scaling behavior of critical relaxation processes, Z. Phys. B, Condens. Matter, Volume 73 (1989), p. 539
[61] Computer Simulation Studies in Condensed-Matter Physics XVI (D.P. Landau et al., eds.), Springer-Verlag, Berlin, Heidelberg, 2006, p. 25 (Ch. 4)
[62] Study of phase transitions from short-time non-equilibrium behaviour, Rep. Prog. Phys., Volume 74 (2011), p. 026501
[63] Short-time relaxation of a driven elastic string in a random medium, Phys. Rev. B, Volume 74 (2006), p. 140201
[64] Universal nonstationary dynamics at the depinning transition, Phys. Rev. Lett., Volume 103 (2009), p. 160602
[65] Thermal rounding of the charge-density-wave depinning transition, Phys. Rev. B, Volume 45 (1992), p. 9465
[66] Influence of temperature on the depinning transition of driven interfaces, Europhys. Lett., Volume 44 (1998), p. 634
[67] Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films, Phys. Rev. B, Volume 85 (2012), p. 214416
[68] Creep motion of a magnetic wall: Avalanche size divergence, Europhys. Lett., Volume 68 (2004), p. 460
[69] Depinning of domain walls with an internal degree of freedom, Phys. Rev. B, Volume 80 (2009), p. 054413
Cité par Sources :
Commentaires - Politique