Comptes Rendus
A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces
Comptes Rendus. Mécanique, Data-Based Engineering Science and Technology, Volume 347 (2019) no. 11, pp. 873-881.

Reduced order modeling (ROM) provides an efficient framework to compute solutions of parametric problems. Basically, it exploits a set of precomputed high-fidelity solutions—computed for properly chosen parameters, using a full-order model—in order to find the low dimensional space that contains the solution manifold. Using this space, an approximation of the numerical solution for new parameters can be computed in real-time response scenario, thanks to the reduced dimensionality of the problem. In a ROM framework, the most expensive part from the computational viewpoint is the calculation of the numerical solutions using the full-order model. Of course, the number of collected solutions is strictly related to the accuracy of the reduced order model. In this work, we aim at increasing the precision of the model also for few input solutions by coupling the proper orthogonal decomposition with interpolation (PODI)—a data-driven reduced order method—with the active subspace (AS) property, an emerging tool for reduction in parameter space. The enhanced ROM results in a reduced number of input solutions to reach the desired accuracy. In this contribution, we present the numerical results obtained by applying this method to a structural problem and in a fluid dynamics one.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.11.012
Keywords: Reduced order modeling, Proper orthogonal decomposition with interpolation, Reduction in parameter space, Active subspaces, Free form deformation

Nicola Demo 1 ; Marco Tezzele 1 ; Gianluigi Rozza 1

1 Mathematics Area, mathLab, SISSA, International School of Advanced Studies, via Bonomea 265, 34136 Trieste, Italy
@article{CRMECA_2019__347_11_873_0,
     author = {Nicola Demo and Marco Tezzele and Gianluigi Rozza},
     title = {A non-intrusive approach for the reconstruction of {POD} modal coefficients through active subspaces},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {873--881},
     publisher = {Elsevier},
     volume = {347},
     number = {11},
     year = {2019},
     doi = {10.1016/j.crme.2019.11.012},
     language = {en},
}
TY  - JOUR
AU  - Nicola Demo
AU  - Marco Tezzele
AU  - Gianluigi Rozza
TI  - A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 873
EP  - 881
VL  - 347
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2019.11.012
LA  - en
ID  - CRMECA_2019__347_11_873_0
ER  - 
%0 Journal Article
%A Nicola Demo
%A Marco Tezzele
%A Gianluigi Rozza
%T A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces
%J Comptes Rendus. Mécanique
%D 2019
%P 873-881
%V 347
%N 11
%I Elsevier
%R 10.1016/j.crme.2019.11.012
%G en
%F CRMECA_2019__347_11_873_0
Nicola Demo; Marco Tezzele; Gianluigi Rozza. A non-intrusive approach for the reconstruction of POD modal coefficients through active subspaces. Comptes Rendus. Mécanique, Data-Based Engineering Science and Technology, Volume 347 (2019) no. 11, pp. 873-881. doi : 10.1016/j.crme.2019.11.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.11.012/

[1] F. Salmoiraghi; F. Ballarin; G. Corsi; A. Mola; M. Tezzele; G. Rozza Advances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives, ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, vol. 1, 2016, pp. 1013-1031

[2] G. Rozza; M.H. Malik; N. Demo; M. Tezzele; M. Girfoglio; G. Stabile; A. Mola Advances in reduced order methods for parametric industrial problems in computational fluid dynamics, Glasgow, UK (R. Owen; R. de Borst; J. Reese; P. Chris, eds.) (2018), pp. 59-76

[3] T. Bui-Thanh; M. Damodaran; K.E. Willcox Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA J., Volume 42 (2004) no. 8, pp. 1505-1516

[4] P.G. Constantine Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies, vol. 2, SIAM, 2015

[5] M. Tezzele, N. Demo, A. Mola, G. Rozza, An integrated data-driven computational pipeline with model order reduction for industrial and applied mathematics. Special Volume, ECMI (W. Schilders ed.), 2018, submitted for publication, . | arXiv

[6] G. Rozza; M.W. Hess; G. Stabile; M. Tezzele; F. Ballarin Basic ideas and tools for projection-based reduced order methods: preliminaries and warming-up (P. Benner; S. Grivet-Talocia; A. Quarteroni; G. Rozza; W.H.A. Schilders; L.M. Silveira, eds.), Handbook on Model Order Reduction, vol. 1, chap. 1, De Gruyter, 2019

[7] M. Tezzele; N. Demo; G. Rozza Shape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces, Proceedings of MARINE 2019: VIII International Conference on Computational Methods in Marine Engineering, 2019, pp. 122-133

[8] M. Tezzele; F. Ballarin; G. Rozza Combined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods (D. Boffi; L.F. Pavarino; G. Rozza; S. Scacchi; C. Vergara, eds.), Mathematical and Numerical Modeling of the Cardiovascular System and Applications, Springer International Publishing, 2018, pp. 185-207

[9] J.S. Hesthaven; G. Rozza; B. Stamm et al. Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer, 2016

[10] F. Ballarin; A. Manzoni; A. Quarteroni; G. Rozza Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations, Int. J. Numer. Methods Eng., Volume 102 (2015) no. 5, pp. 1136-1161

[11] G. Stabile; G. Rozza Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations, Comput. Fluids, Volume 173 (2018), pp. 273-284

[12] S. Lorenzi; A. Cammi; L. Luzzi; G. Rozza POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations, Comput. Methods Appl. Mech. Eng., Volume 311 (2016), pp. 151-179

[13] G. Stabile; F. Ballarin; G. Zuccarino; G. Rozza A reduced order variational multiscale approach for turbulent flows, Adv. Comput. Math. (2018), pp. 1-20

[14] M. Couplet; C. Basdevant; P. Sagaut Calibrated reduced-order POD-Galerkin system for fluid flow modelling, J. Comput. Phys., Volume 207 (2005) no. 1, pp. 192-220

[15] E.N. Karatzas; G. Stabile; L. Nouveau; G. Scovazzi; G. Rozza A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow, Comput. Methods Appl. Mech. Eng., Volume 347 (2019), pp. 568-587

[16] X. Zou; M. Conti; P. Díez; F. Auricchio A nonintrusive proper generalized decomposition scheme with application in biomechanics, Int. J. Numer. Methods Eng., Volume 113 (2018) no. 2, pp. 230-251

[17] T. Bui-Thanh; M. Damodaran; K. Willcox Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics, 21st AIAA Applied Aerodynamics Conference, 2003, p. 4213

[18] N. Demo; M. Tezzele; A. Mola; G. Rozza An efficient shape parametrisation by free-form deformation enhanced by active subspace for hull hydrodynamic ship design problems in open source environment, The 28th International Ocean and Polar Engineering Conference, 2018

[19] N. Demo; M. Tezzele; G. Gustin; G. Lavini; G. Rozza Shape optimization by means of proper orthogonal decomposition and dynamic mode decomposition, Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research, IOS Press, 2018, pp. 212-219

[20] N. Demo; M. Tezzele; A. Mola; G. Rozza A complete data-driven framework for the efficient solution of parametric shape design and optimisation in naval engineering problems, Proceedings of MARINE 2019: VIII International Conference on Computational Methods in Marine Engineering, 2019, pp. 111-121

[21] F. Salmoiraghi; A. Scardigli; H. Telib; G. Rozza Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation, Int. J. Comput. Fluid Dyn., Volume 32 (2018) no. 4–5, pp. 233-247

[22] V. Dolci; R. Arina Proper orthogonal decomposition as surrogate model for aerodynamic optimization, Int. J. Aerosp. Eng. (2016), p. 2016

[23] M. Ripepi; M. Verveld; N. Karcher; T. Franz; M. Abu-Zurayk; S. Görtz; T. Kier Reduced-order models for aerodynamic applications, loads and MDO, CEAS Aeronaut. J., Volume 9 (2018) no. 1, pp. 171-193

[24] F. Garotta, N. Demo, M. Tezzele, M. Carraturo, A. Reali, G. Rozza, Reduced order isogeometric analysis approach for PDEs in parametrized domains. QUIET special volume, 2018, submitted for publication, . | arXiv

[25] S.L. Brunton; J.N. Kutz Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2019

[26] A. Quarteroni; A. Manzoni; F. Negri Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92, Springer, 2015

[27] N. Demo; M. Tezzele; G. Rozza EZyRB: Easy Reduced Basis method, J. Open Source Softw., Volume 3 (2018) no. 24, p. 661

[28] P.G. Constantine; E. Dow; Q. Wang Active subspace methods in theory and practice: applications to kriging surfaces, SIAM J. Sci. Comput., Volume 36 (2014) no. 4, p. A1500-A1524

[29] T.W. Lukaczyk; P. Constantine; F. Palacios; J.J. Alonso Active subspaces for shape optimization, 10th AIAA Multidisciplinary Design Optimization Conference, 2014, p. 1171

[30] P.G. Constantine; M. Emory; J. Larsson; G. Iaccarino Exploiting active subspaces to quantify uncertainty in the numerical simulation of the hyshot ii scramjet, J. Comput. Phys., Volume 302 (2015), pp. 1-20

[31] M. Tezzele; F. Salmoiraghi; A. Mola; G. Rozza Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems, Adv. Model. Simul. Eng. Sci., Volume 5 ( Sep 2018 ) no. 1, p. 25

[32] A. Mola; M. Tezzele; M. Gadalla; F. Valdenazzi; D. Grassi; R. Padovan; G. Rozza Efficient reduction in shape parameter space dimension for ship propeller blade design, Proceedings of MARINE 2019: VIII International Conference on Computational Methods in Marine Engineering, 2019, pp. 201-212

[33] M. Tezzele; N. Demo; M. Gadalla; A. Mola; G. Rozza Model order reduction by means of active subspaces and dynamic mode decomposition for parametric hull shape design hydrodynamics, Technology and Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on Ship & Maritime Research, IOS Press, 2018, pp. 569-576

[34] R. Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection, Montreal, Quebec (1995), pp. 1137-1145

[35] A. Pinkus Approximating by ridge functions, Surface Fitting and Multiresolution Methods, 1997, pp. 279-292

[36] H.G. Weller; G. Tabor; H. Jasak; C. Fureby A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., Volume 12 (1998) no. 6, pp. 620-631

[37] T. Sederberg; S. Parry Free-form deformation of solid geometric models, Proceedings of SIGGRAPH – Special Interest Group on GRAPHics and Interactive Techniques, SIGGRAPH, 1986, pp. 151-159

[38] PyGeM: Python Geometrical Morphing https://github.com/mathLab/PyGeM (available at)

[39] M.D. Buhmann Radial Basis Functions: Theory and Implementations, vol. 12, Cambridge University Press, Cambridge, UK, 2003

[40] D. Forti; G. Rozza Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems, Int. J. Comput. Fluid Dyn., Volume 28 (2014) no. 3–4, pp. 158-169

[41] G. Rozza; A. Koshakji; A. Quarteroni Free form deformation techniques applied to 3D shape optimization problems, Commun. Appl. Ind. Math., Volume 4 (2013), pp. 1-26

[42] D. Shepard A two-dimensional interpolation function for irregularly-spaced data, Proceedings-1968 ACM National Conference, ACM, 1968, pp. 517-524

[43] F. Ballarin; A. D'Amario; S. Perotto; G. Rozza A POD-selective inverse distance weighting method for fast parametrized shape morphing, Int. J. Numer. Methods Eng., Volume 117 (2019) no. 8, pp. 860-884

  • Wei Xiao; Yingying Shen; Jiao Zhao; Luogeng Lv; Jiangtao Chen; Wei Zhao An Adaptive Multi-Fidelity Surrogate Model for Uncertainty Propagation Analysis, Applied Sciences, Volume 15 (2025) no. 6, p. 3359 | DOI:10.3390/app15063359
  • Aratz Garcia-LLona; Miquel Aguirre; Francesc Verdugo; Stéphane Avril Robust geometrical parametrization of the lower limb for the digital twin of patients under compression therapy, Computer Methods and Programs in Biomedicine, Volume 269 (2025), p. 108875 | DOI:10.1016/j.cmpb.2025.108875
  • Kexin Liu; Dongyang Li; Yunpeng Liu; Gang Liu; Zhenbin Du; Shuqi Zhang; Ke Wang; Xiaolin Zhao Research on Dynamic Reduced‐Order Model for Fast Calculation of Transient Temperature Field in Transformer Windings, IET Electric Power Applications, Volume 19 (2025) no. 1 | DOI:10.1049/elp2.70056
  • Bilal Mufti; Christian Perron; Dimitri N. Mavris Multifidelity Methodology for Reduced-Order Models with High-Dimensional Inputs, AIAA Journal, Volume 62 (2024) no. 10, p. 3932 | DOI:10.2514/1.j064110
  • Oisín M. Morrison; Federico Pichi; Jan S. Hesthaven GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications, Computer Methods in Applied Mechanics and Engineering, Volume 432 (2024), p. 117458 | DOI:10.1016/j.cma.2024.117458
  • Angelo Pasquale; Mohammad-Javad Kazemzadeh-Parsi; Daniele Di Lorenzo; Victor Champaney; Amine Ammar; Francisco Chinesta Modular parametric PGD enabling online solution of partial differential equations, Computers Mathematics with Applications, Volume 176 (2024), p. 244 | DOI:10.1016/j.camwa.2024.10.037
  • L. Lestandi; J.C. Wong; G.Y. Dong; S. J. Kuehsamy; J. Mikula; G. Vastola; U. Kizhakkinan; C.S. Ford; D.W. Rosen; M.H. Dao; M.H. Jhon Data-driven surrogate modelling of residual stresses in Laser Powder-Bed Fusion, International Journal of Computer Integrated Manufacturing, Volume 37 (2024) no. 6, p. 685 | DOI:10.1080/0951192x.2023.2257628
  • Federico Pichi; Beatriz Moya; Jan S. Hesthaven A graph convolutional autoencoder approach to model order reduction for parametrized PDEs, Journal of Computational Physics, Volume 501 (2024), p. 112762 | DOI:10.1016/j.jcp.2024.112762
  • Francesco Romor; Marco Tezzele; Gianluigi Rozza A Local Approach to Parameter Space Reduction for Regression and Classification Tasks, Journal of Scientific Computing, Volume 99 (2024) no. 3 | DOI:10.1007/s10915-024-02542-0
  • Sajad Salavatidezfouli; Anna Nikishova; Davide Torlo; Martina Teruzzi; Gianluigi Rozza Computations for Sustainability, Quantitative Sustainability (2024), p. 91 | DOI:10.1007/978-3-031-39311-2_7
  • José E. Valenzuela del Río; Arun Ramamurthy; Hyunjee Jin, AIAA SCITECH 2023 Forum (2023) | DOI:10.2514/6.2023-0668
  • Nicola Demo; Marco Tezzele; Gianluigi Rozza A DeepONet multi-fidelity approach for residual learning in reduced order modeling, Advanced Modeling and Simulation in Engineering Sciences, Volume 10 (2023) no. 1 | DOI:10.1186/s40323-023-00249-9
  • Tao Wu; Fan Yang; Umer Farooq; Jinyang Jiang; Xingyu Hu Real-time calculation method of transformer winding temperature field based on sparse sensor placement, Case Studies in Thermal Engineering, Volume 47 (2023), p. 103090 | DOI:10.1016/j.csite.2023.103090
  • Wayne Isaac Tan Uy; Dirk Hartmann; Benjamin Peherstorfer Operator inference with roll outs for learning reduced models from scarce and low-quality data, Computers Mathematics with Applications, Volume 145 (2023), p. 224 | DOI:10.1016/j.camwa.2023.06.012
  • Francesco Romor; Marco Tezzele; Markus Mrosek; Carsten Othmer; Gianluigi Rozza Multi‐fidelity data fusion through parameter space reduction with applications to automotive engineering, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 23, p. 5293 | DOI:10.1002/nme.7349
  • Marco Tezzele; Lorenzo Fabris; Matteo Sidari; Mauro Sicchiero; Gianluigi Rozza A multifidelity approach coupling parameter space reduction and nonintrusive POD with application to structural optimization of passenger ship hulls, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 5, p. 1193 | DOI:10.1002/nme.7159
  • Jiangtao Chen; Wei Xiao; Luogeng Lv; Jiao Zhao; Wei Zhao; Xiaojun Wu An Adaptive Meta-Modelling Approach for Multi-Dimensional Correlated Flow Field Responses, International Journal of Computational Fluid Dynamics, Volume 37 (2023) no. 9-10, p. 791 | DOI:10.1080/10618562.2024.2373200
  • Nicolò Abrate; Alberto Moscatello; Gianmario Ledda; Nicola Pedroni; Federica Carbone; Emanuela Maffia; Andrea Carpignano A novel approach combining bootstrapped non-intrusive reduced order models and unscented transform for the robust and efficient CFD analysis of accidental gas releases in congested plants, Journal of Loss Prevention in the Process Industries, Volume 83 (2023), p. 105015 | DOI:10.1016/j.jlp.2023.105015
  • Nicola Cavallini; Riccardo Ferretti; Gunnar Bostrom; Stephen Croft; Aurora Fassi; Giovanni Mercurio; Stefan Nonneman; Andrea Favalli Vanquishing the computational cost of passive gamma emission tomography simulations leveraging physics-aware reduced order modeling, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-41220-3
  • Jan S. Hesthaven; Cecilia Pagliantini; Gianluigi Rozza Reduced basis methods for time-dependent problems, Acta Numerica, Volume 31 (2022), p. 265 | DOI:10.1017/s0962492922000058
  • Hai Nguyen; Jonathan Wittmer; Tan Bui-Thanh DIAS: A Data-Informed Active Subspace Regularization Framework for Inverse Problems, Computation, Volume 10 (2022) no. 3, p. 38 | DOI:10.3390/computation10030038
  • C. Liu; R. Fu; D. Xiao; R. Stefanescu; P. Sharma; C. Zhu; S. Sun; C. Wang EnKF data-driven reduced order assimilation system, Engineering Analysis with Boundary Elements, Volume 139 (2022), p. 46 | DOI:10.1016/j.enganabound.2022.02.016
  • Nirav Vasant Shah; Michele Girfoglio; Peregrina Quintela; Gianluigi Rozza; Alejandro Lengomin; Francesco Ballarin; Patricia Barral Finite element based Model Order Reduction for parametrized one-way coupled steady state linear thermo-mechanical problems, Finite Elements in Analysis and Design, Volume 212 (2022), p. 103837 | DOI:10.1016/j.finel.2022.103837
  • Francesco Romor; Marco Tezzele; Andrea Lario; Gianluigi Rozza Kernel‐based active subspaces with application to computational fluid dynamics parametric problems using the discontinuous Galerkin method, International Journal for Numerical Methods in Engineering, Volume 123 (2022) no. 23, p. 6000 | DOI:10.1002/nme.7099
  • Jinsong Hua; Einar Arne Sørheim Nonintrusive reduced‐order modeling approach for parametrized unsteady flow and heat transfer problems, International Journal for Numerical Methods in Fluids, Volume 94 (2022) no. 7, p. 976 | DOI:10.1002/fld.5080
  • Michele Girfoglio; Francesco Ballarin; Giuseppe Infantino; Francesca Nicoló; Andrea Montalto; Gianluigi Rozza; Roberto Scrofani; Marina Comisso; Francesco Musumeci Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device, Medical Engineering Physics, Volume 107 (2022), p. 103849 | DOI:10.1016/j.medengphy.2022.103849
  • M. Girfoglio; L. Scandurra; F. Ballarin; G. Infantino; F. Nicolo; A. Montalto; G. Rozza; R. Scrofani; M. Comisso; F. Musumeci Non-intrusive data-driven ROM framework for hemodynamics problems, Acta Mechanica Sinica, Volume 37 (2021) no. 7, p. 1183 | DOI:10.1007/s10409-021-01090-2
  • Mahmoud Gadalla; Marta Cianferra; Marco Tezzele; Giovanni Stabile; Andrea Mola; Gianluigi Rozza On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis, Computers Fluids, Volume 216 (2021), p. 104819 | DOI:10.1016/j.compfluid.2020.104819
  • Nicola Demo; Marco Tezzele; Andrea Mola; Gianluigi Rozza Hull Shape Design Optimization with Parameter Space and Model Reductions, and Self-Learning Mesh Morphing, Journal of Marine Science and Engineering, Volume 9 (2021) no. 2, p. 185 | DOI:10.3390/jmse9020185
  • Giulio Ortali; Nicola Demo; Gianluigi Rozza A Gaussian Process Regression approach within a data-driven POD framework for engineering problems in fluid dynamics, Mathematics in Engineering, Volume 4 (2021) no. 3, p. 1 | DOI:10.3934/mine.2022021
  • Francesco Romor; Marco Tezzele; Gianluigi Rozza Multi‐fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces, PAMM, Volume 20 (2021) no. S1 | DOI:10.1002/pamm.202000349
  • J. K. Hammond; R. Chen; V. Mallet Meta-modeling of a simulation chain for urban air quality, Advanced Modeling and Simulation in Engineering Sciences, Volume 7 (2020) no. 1 | DOI:10.1186/s40323-020-00173-2
  • Marco Tezzele; Nicola Demo; Giovanni Stabile; Andrea Mola; Gianluigi Rozza Enhancing CFD predictions in shape design problems by model and parameter space reduction, Advanced Modeling and Simulation in Engineering Sciences, Volume 7 (2020) no. 1 | DOI:10.1186/s40323-020-00177-y

Cité par 33 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: