In this paper, an algorithm for identifying equations representing a continuous nonlinear dynamical system from a noise-free state and time-derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is paid to guarantee that the physical invariant quantities stay constant along the integral curves. The numerical methodology is validated on a two-dimensional Lotka–Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perspectives of extension to more complex systems are discussed.
Accepted:
Published online:
Florian De Vuyst 1; Pierre Villon 2
@article{CRMECA_2019__347_11_882_0, author = {Florian De Vuyst and Pierre Villon}, title = {Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints}, journal = {Comptes Rendus. M\'ecanique}, pages = {882--890}, publisher = {Elsevier}, volume = {347}, number = {11}, year = {2019}, doi = {10.1016/j.crme.2019.11.013}, language = {en}, }
TY - JOUR AU - Florian De Vuyst AU - Pierre Villon TI - Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints JO - Comptes Rendus. Mécanique PY - 2019 SP - 882 EP - 890 VL - 347 IS - 11 PB - Elsevier DO - 10.1016/j.crme.2019.11.013 LA - en ID - CRMECA_2019__347_11_882_0 ER -
%0 Journal Article %A Florian De Vuyst %A Pierre Villon %T Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints %J Comptes Rendus. Mécanique %D 2019 %P 882-890 %V 347 %N 11 %I Elsevier %R 10.1016/j.crme.2019.11.013 %G en %F CRMECA_2019__347_11_882_0
Florian De Vuyst; Pierre Villon. Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints. Comptes Rendus. Mécanique, Data-Based Engineering Science and Technology, Volume 347 (2019) no. 11, pp. 882-890. doi : 10.1016/j.crme.2019.11.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.11.013/
[1] Learning corrections for hyperelastic models from data, Front. Mater., Volume 6 (2019) no. 14
[2] Lotka–Volterra population models, Annu. Rev. Ecol. Syst., Volume 9 (1978), pp. 189-218
[3] Geometrical methods and numerical computations for prey-predator systems, Br. J. Math. Comput. Sci., Volume 10 (2015) no. 5, pp. 1-15
[4] Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., Volume 656 (2010), pp. 5-28
[5] Solution of the matrix equation , Commun. ACM, Volume 15 (1972) no. 9, pp. 820-826 | DOI
[6] A data-driven approximation of the Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci., Volume 25 (2015), pp. 1307-1346
[7] Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E, Volume 56 (1997), p. 6620
[8] Learning slosh dynamics by means of data, Comput. Mech., Volume 64 (2019) no. 2, pp. 511-552
[9] Contin. Mech. Thermodyn., 31 (2019) no. 1, pp. 239-253
[10] Data Assimilation: Methods, Algorithms, and Applications, Fundamentals of Algorithms, SIAM, 2017
Cited by Sources:
Comments - Policy