In this paper, we introduce a new model of the nonisothermal immiscible compressible thermodynamically consistent two-phase flow in a porous domain Ω. This model includes the term describing the skeleton and interphase boundary energies. In the framework of the model, we derive the equation for the entropy function in the whole Ω and then obtain the estimate of the maximal entropy of the system.
Accepted:
Published online:
Mladen Jurak 1; Alexandre Koldoba 2; Andrey Konyukhov 2, 3; Leonid Pankratov 2
@article{CRMECA_2019__347_12_920_0, author = {Mladen Jurak and Alexandre Koldoba and Andrey Konyukhov and Leonid Pankratov}, title = {Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {920--929}, publisher = {Elsevier}, volume = {347}, number = {12}, year = {2019}, doi = {10.1016/j.crme.2019.11.015}, language = {en}, }
TY - JOUR AU - Mladen Jurak AU - Alexandre Koldoba AU - Andrey Konyukhov AU - Leonid Pankratov TI - Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media JO - Comptes Rendus. Mécanique PY - 2019 SP - 920 EP - 929 VL - 347 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2019.11.015 LA - en ID - CRMECA_2019__347_12_920_0 ER -
%0 Journal Article %A Mladen Jurak %A Alexandre Koldoba %A Andrey Konyukhov %A Leonid Pankratov %T Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media %J Comptes Rendus. Mécanique %D 2019 %P 920-929 %V 347 %N 12 %I Elsevier %R 10.1016/j.crme.2019.11.015 %G en %F CRMECA_2019__347_12_920_0
Mladen Jurak; Alexandre Koldoba; Andrey Konyukhov; Leonid Pankratov. Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media. Comptes Rendus. Mécanique, Volume 347 (2019) no. 12, pp. 920-929. doi : 10.1016/j.crme.2019.11.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.11.015/
[1] Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam, 1990
[2] Mathematical Models and Finite Elements for Reservoir Simulation, North–Holland, Amsterdam, 1986
[3] Improvement of numerical approximation of coupled multiphase multicomponent flow with reactive geochemical transport in porous media, Oil Gas Sci. Technol. – Rev. IFP Energ. Nouv., Volume 73 (2018) no. 73, pp. 1-16
[4] Study of compositional multiphase flow formulation using complementarity conditions, Oil Gas Sci. Technol. – Rev. IFP Energ. Nouv., Volume 74 (2019) no. 43, pp. 1-15
[5] Upscaling of two-phase flow with chemical reactions in double porosity media, Brest, France, 26–30 August 2019 (2019), pp. 2455-2474
[6] The homogenized Kondaurov type non-equilibrium model of two-phase flow in multiscale non-homogeneous media, Phys. Scr., Volume 94 (2019)
[7] Fragmentation, interfacial surface transport and flow structure maps for two-phase flow in model pore networks. Predictions based on extensive, DeProF model simulations, Oil Gas Sci. Technol. – Rev. IFP Énerg. Nouv., Volume 73 (2018) no. 6, pp. 1-36
[8] Poromechanics, Wiley, New-York, 2004
[9] Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Water Resour., Volume 13 (1990), pp. 169-186
[10] Thermodynamic basis of capillary pressure in porous media, Water Resour., Volume 29 (1993), pp. 3389-3405
[11] Toward an improved description of the physics of two-phase flow, Adv. Water Resour., Volume 16 (1993), pp. 53-67
[12] A non-equilibrium model of a porous medium saturated with immiscible fluids, J. Appl. Math. Mech., Volume 73 (2009), pp. 88-102
[13] A model of incomplete phase transitions of gas hydrates in a porous medium, J. Appl. Math. Mech., Volume 75 (2011), pp. 27-40
[14] An existence result for non-isothermal immiscible incompressible two-phase flow in porous media, Math. Methods Appl. Sci., Volume 40 (2017), pp. 7510-7539
[15] Homogenization of nonisothermal immiscible incompressible flow in porous media, Nonlinear Anal., Real World Appl., Volume 43 (2018), pp. 192-212
[16] Statistical Physics, Pergamon Press, Oxford – New York – Toronto – Sydney – Braunschweig, 1969
Cited by Sources:
Comments - Policy