Comptes Rendus
Influence of geometry on stress state in bulk characterization tests
Comptes Rendus. Mécanique, Volume 347 (2019) no. 12, pp. 930-943.

This paper is concerned with the selection of the geometries of test specimens for bulk metal characterization tests. Simulations of characterization tests on cylindrical, notched, and shear specimens were conducted to allow for the analysis of stress state evolution during the tests and to evidence the impact of geometry on stress state. Both stress triaxiality and Lode parameter were considered for selecting representative specimens. Three choice criterions were regarded: the diversification of stress states as well as the constancy and the nearness of stress state indicators to the theoretical values along the deformation.

Published online:
DOI: 10.1016/j.crme.2019.10.003
Keywords: Characterization tests, Bulk metalworking, Triaxiality, Lode parameter

Sonda Moakhar 1; Hamdi Hentati 1; Maher Barkallah 1; Jamel Louati 1; Mohamed Haddar 1

1 Research Laboratory of Mechanics, Modeling and Manufacturing (LA2MP), National Engineering School of Sfax, University of Sfax, Tunisia
     author = {Sonda Moakhar and Hamdi Hentati and Maher Barkallah and Jamel Louati and Mohamed Haddar},
     title = {Influence of geometry on stress state in bulk characterization tests},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {930--943},
     publisher = {Elsevier},
     volume = {347},
     number = {12},
     year = {2019},
     doi = {10.1016/j.crme.2019.10.003},
     language = {en},
AU  - Sonda Moakhar
AU  - Hamdi Hentati
AU  - Maher Barkallah
AU  - Jamel Louati
AU  - Mohamed Haddar
TI  - Influence of geometry on stress state in bulk characterization tests
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 930
EP  - 943
VL  - 347
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2019.10.003
LA  - en
ID  - CRMECA_2019__347_12_930_0
ER  - 
%0 Journal Article
%A Sonda Moakhar
%A Hamdi Hentati
%A Maher Barkallah
%A Jamel Louati
%A Mohamed Haddar
%T Influence of geometry on stress state in bulk characterization tests
%J Comptes Rendus. Mécanique
%D 2019
%P 930-943
%V 347
%N 12
%I Elsevier
%R 10.1016/j.crme.2019.10.003
%G en
%F CRMECA_2019__347_12_930_0
Sonda Moakhar; Hamdi Hentati; Maher Barkallah; Jamel Louati; Mohamed Haddar. Influence of geometry on stress state in bulk characterization tests. Comptes Rendus. Mécanique, Volume 347 (2019) no. 12, pp. 930-943. doi : 10.1016/j.crme.2019.10.003.

[1] M.B. Silva; K. Isik; A.E. Tekkaya; P.A.F. Martins Fracture loci in sheet metal forming: a review, Acta Metall. Sin. Engl. Lett., Volume 28 (2015), pp. 1415-1425 | DOI

[2] F. Rastellini; G. Socorro; A. Forgas; E. Onate A triaxial failure diagram to predict the forming limit of 3D sheet metal parts subjected to multiaxial stresses, J. Phys. Conf. Ser., Volume 734 (2016) | DOI

[3] H. Hentati; M. Dhahri; F. Dammak A phase-field model of quasistatic and dynamic brittle fracture using staggered algorithm, J. Mech. Mater. Struct., Volume 11 (2016) no. 3, pp. 309-327 | DOI

[4] I. Barsoum; J. Faleskog Rupture mechanisms in combined tension and shear-experiments, Int. J. Solids Struct., Volume 44 (2007), pp. 1768-1786 | DOI

[5] C.M.A. Silva; L.M. Alves; C.V. Nielsen; A.G. Atkins; P.A.F. Martins Failure by fracture in bulk metal forming, J. Mater. Process. Technol., Volume 215 (2015), pp. 287-298 | DOI

[6] P.W. Bridgman Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure, 1964

[7] V. Vujovic; A.H. Shabaik A new workability criterion for ductile metals, J. Eng. Mater. Technol., Volume 108 (1986), p. 245 | DOI

[8] E. Ghassemali; X. Song; M. Zarinejad; D. Atsushi; M.J. Tan Bulk metal forming processes in manufacturing (A. Nee, ed.), Handbook of Manufacturing Engineering and Technology, Springer, London, 2013, pp. 1-50 | DOI

[9] P. Christiansen; C. Nielsen; N. Bay; P. Martins Internal shear cracking in bulk metal forming, Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., Volume 233 (2019) no. 4 | DOI

[10] J.R. Rice; D.M. Tracey On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, Volume 17 (1969), pp. 201-217 | DOI

[11] Y. Bao; T. Wierzbicki On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., Volume 46 (2004), pp. 81-98 | DOI

[12] G. Mirone Role of stress triaxiality in elastoplastic characterization and ductile failure prediction, Eng. Fract. Mech., Volume 74 (2007), pp. 1203-1221 | DOI

[13] M. Oyane; T. Sato; K. Okimoto; S. Shima Criteria for ductile fracture and their applications, J. Mech. Work. Technol., Volume 4 (1980), pp. 65-81 | DOI

[14] L.P. Lei; J. Kim; B.S. Kang Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion, Int. J. Mech. Sci., Volume 7 (2002), pp. 1411-1428

[15] P. Christiansen; J.H. Hattel; N. Bay; K. Lyngby; P.A.F. Martins Modelling of damage during hot forging of ingots, STEELSIM 2013, Ostrava, Czech Republic ( September 2013 ), pp. 10-12

[16] G.R. Johnson; W.H. Cook Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., Volume 21 (1985), pp. 31-48 | DOI

[17] M. Murugesan; D.W. Jung Johnson–Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications, Materials, Volume 12 (2019), p. 609 | DOI

[18] S. Chocron; B. Erice; C.E. Anderson A new plasticity and failure model for ballistic application, Int. J. Impact Eng., Volume 38 (2011), pp. 755-764 | DOI

[19] H. Hentati; I.B. Naceur; W. Bouzid; A. Maalej Numerical analysis of damage thermo-mechanical models, Adv. Appl. Math. Mech., Volume 7 (2015) no. 5, pp. 625-643 | DOI

[20] L.E. Lindgren; A. Svoboda; D. Wedberg; M. Lundblad Computational simulation of manufacturing processes towards predictive simulations of machining, C. R. Mecanique, Volume 344 (2016), pp. 284-295

[21] Y. Bai; T. Wierzbicki A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., Volume 24 (2008), pp. 1071-1096 | DOI

[22] Y. Bai; T. Wierzbicki A comparative study of three groups of ductile fracture loci in the 3D space, Eng. Fract. Mech., Volume 135 (2015), pp. 147-167 | DOI

[23] K.S. Zhano; Z.H. Li Numerical analysis of the stress-strain curve and fracture initiation for ductile material, Eng. Fract. Mech., Volume 49 (1994), pp. 235-241 | DOI

[24] B. Erice; F. Gálvez A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion, Int. J. Solids Struct., Volume 51 (2014), pp. 93-110 | DOI

[25] P.A.F. Martins; N. Bay; A.E. Tekkaya; A.G. Atkins Characterization of fracture loci in metal forming, Int. J. Mech. Sci., Volume 83 (2014), pp. 112-123 | DOI

[26] L.W. Meyer; T. Halle Shear strength and shear failure, overview of testing and behavior of ductile metals, Mech. Time-Depend. Mater., Volume 15 (2011), pp. 327-340 | DOI

[27] G.R. Johnson; W.H. Cook A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, The Hague, the Netherlands, 19–21 April (1983) (Accessed 2019-3-23)

[28] H. Ijaz; M. Zain-ul-abdein; W. Saleem; M. Asad; T. Mabrouki Modified Johnson–Cook plasticity model with damage evolution: application to turning simulation of 2XXX aluminium alloy, J. Mech., Volume 33 (2017), pp. 777-788 | DOI

[29] M. Rodriguez-Millan; D. Garcia-Gonzalez; A. Rusinek; A. Arias Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys, Metals, Volume 8 (2018), p. 520 | DOI

[30] M. Alebooyeh; H.R. Baharvandi; C. Aghanajafi Two-dimensional FE simulation of impact loading on alumina matrix nanocomposite reinforced by Dyneema® HB25 laminates, J. Mech., Volume 33 (2017), pp. 1-11 | DOI

[31] H. Autenrieth; V. Schulze; N. Herzig; L.W. Meyer Ductile failure model for the description of AISI 1045 behavior under different loading conditions, Mech. Time-Depend. Mater., Volume 13 (2009), pp. 215-231 | DOI

[32] S.P.F.C. Jaspers; J.H. Dautzenberg Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone, J. Mater. Process. Technol., Volume 122 (2002), pp. 322-330 | DOI

[33] W. Lode Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel, Z. Phys., Volume 36 (1926), pp. 913-939 | DOI

[34] J.P. Bardet Lode dependences for isotropic pressure-sensitive elastoplastic materials, J. Appl. Mech. Trans. ASME, Volume 57 (1990), pp. 498-506

[35] C.F. Guzmán About the Lode Angle Influence in Ductile Fracture, University of Liège, Belgium, 2013 (Technical Report) | DOI

[36] K. Danas; P. Ponte Castañeda Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, Int. J. Solids Struct., Volume 49 (2012), pp. 1325-1342 | DOI

[37] S. Moakhar; H. Hentati; M. Barkallah; J. Louati; C. Bonk; B.A. Behrens; M. Haddar Evaluation of AW-6082 aluminium bar shearing simulation, Lecture Note in Mechanical Engineering, 2019 (ISBN: 978-3-030-24246-6) | DOI

[38] C.L. Hu; L.Q. Chen; Z. Zhao; J.W. Li; Z.M. Li Study on the pre-shearing cropping process of steel bars, Int. J. Adv. Manuf. Technol., Volume 97 (2018), pp. 783-793 | DOI

[39] L.F. Menezes; J.V. Fernandes; D.M. Rodrigues Numerical simulation of tensile tests of prestrained sheets, Mater. Sci. Eng., A., Volume 264 (1999), pp. 130-138 | DOI

[40] A. Hor; F. Morel; J.L. Lebrun; G. Germain Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range, Mech. Mater., Volume 64 (2013), pp. 91-110 | DOI

[41] S.P.F.C. Jaspers; J.H. Dautzenberg Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation, J. Mater. Process. Technol., Volume 121 (2002), pp. 123-135 | DOI

[42] C.Z. Duan; H.Y. Yu; Y.J. Cai; Y.Y. Li Finite element simulation and experiment of chip formation during high speed cutting of hardened steel, Appl. Mech. Mater., Volume 29–32 (2010), pp. 1838-1843 | DOI

[43] M.N.A. Nasr Effects of sequential cuts on residual stresses when orthogonal cutting steel AISI 1045, Proc. CIRP, Volume 31 (2015), pp. 118-123 | DOI

[44] M.N.A. Nasr; M.M.A. Ammar An evaluation of different damage models when simulating the cutting process using FEM, Proc. CIRP, Volume 58 (2017), pp. 134-139 | DOI

[45] P. Christiansen; C.V. Nielsen; P.A.F. Martins; N. Bay Predicting the onset of cracks in bulk metal forming by ductile damage criteria, Proc. Eng., Volume 207 (2017), pp. 2048-2053 | DOI

[46] E. Orowan The calculation of roll pressure in hot and cold flat rolling, Proc. Inst. Mech. Eng., Volume 150 (1943), pp. 140-167 | DOI

[47] M.C. Shaw The role of friction in deformation processing, Wear, Volume 6 (1963), pp. 140-158 | DOI

[48] F. Klocke Manufacturing Processes 4: Forming, Springer Science & Business Media, 2014

[49] D.W. Zhang; H. Ou Relationship between friction parameters in a Coulomb–Tresca friction model for bulk metal forming, Tribol. Int., Volume 95 (2016), pp. 13-18 | DOI

[50] R. Chandramouli Thermal effects and friction in forming, NPTEL web course – mechanical engineering – forming, n.d.: p. 10

[51] D.M.R. Cecil; A. Rajadurai Friction evaluation in metal forming using upsetting test, J. Inst. Eng. India Part PR Prod. Eng. Div., Volume 90 (2010), pp. 28-32

[52] K. Karpanan; W. Thomas Influence of lode angle on the ASME local strain failure criterion, PVP2018, Vancouver, Canada, 17–21 June (2016) | DOI

[53] L. Driemeier; M. Brünig; G. Micheli; M. Alves Experiments on stress-triaxiality dependence of material behavior of aluminum alloys, Mech. Mater., Volume 42 (2010), pp. 207-217 | DOI

[54] Y. Bai; X. Teng; T. Wierzbicki On the application of stress triaxiality formula for plane strain fracture testing, J. Eng. Mater. Technol., Volume 131 (2009) | DOI

[55] I. Barsoum; J. Faleskog; S. Pingle The influence of the lode parameter on ductile failure strain in steel, Proc. Eng., Volume 10 (2011), pp. 69-75 | DOI

[56] W. Moćko Effects of cumulative fatigue damage under tensional cyclic loading on the constitutive relation of AISI 1045 steel, Sevastopol, Ukraine, 19–22 June (2013) (Accessed 2019-3-15)

[57] M. Basaran; S.D. Wölkerling; M. Feucht; F. Neukamm; D. Weichert An extension of the GISSMO damage model based on lode angle dependence, Stuttgart, Germany (2010), pp. 3-17

[58] E. Bombasaro Effect of the Lode Angle Parameter on the Behavior of Aluminum, University of Houston, Cullen College of Engineering, Houston, TX, USA, 2014 (Master Thesis)

Cited by Sources:

Comments - Policy