Comptes Rendus
Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates
Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 335-350.

A semi-analytical finite element method algorithm was established to plot the dispersion curves of isotropic aluminum and orthotropic plates. The curves obtained are compared with those plotted by the DISPERSE software and with previous experimental work. The results showed that the accuracy of the method depends on the number of elements for meshing. To ensure good precision and speed of the method, the number of elements per plate thickness must be optimized.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.13
Keywords: SAFE, Dispersion curves, Isotropic, Orthotropic, Interpolation functions, Meshing
Salah Nissabouri 1; Mhammed El Allami 2, 3; El Hassan Boutyour 4

1 Labo MISI, Department of Applied Physics, FST, Settat 26000, Morocco
2 CRMEF, Settat, Morocco
3 Labo MIET, Department of Physics Applied, FST, Settat 26000, Morocco
4 Labo MISI, FST, Settat 26000, Morocco
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2020__348_5_335_0,
     author = {Salah Nissabouri and Mhammed El Allami and El Hassan Boutyour},
     title = {Quantitative evaluation of semi-analytical finite element method for modeling {Lamb} waves in orthotropic plates},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {335--350},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {5},
     year = {2020},
     doi = {10.5802/crmeca.13},
     language = {en},
}
TY  - JOUR
AU  - Salah Nissabouri
AU  - Mhammed El Allami
AU  - El Hassan Boutyour
TI  - Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 335
EP  - 350
VL  - 348
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.13
LA  - en
ID  - CRMECA_2020__348_5_335_0
ER  - 
%0 Journal Article
%A Salah Nissabouri
%A Mhammed El Allami
%A El Hassan Boutyour
%T Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates
%J Comptes Rendus. Mécanique
%D 2020
%P 335-350
%V 348
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmeca.13
%G en
%F CRMECA_2020__348_5_335_0
Salah Nissabouri; Mhammed El Allami; El Hassan Boutyour. Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates. Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 335-350. doi : 10.5802/crmeca.13. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.13/

[1] S. Nissabouri; M. El Allami; M. Bakhcha Lamb waves propagation plotting the dispersion curves, Conference: ICCWCS16Volume: PROCEEDINGSISSN, Morocco (2016), pp. 153-156

[2] E. B. Ndiaye; H. Duflo Non destructive testing of sandwich composites: adhesion defects evaluation; experimental and finite element method simulation comparison, Acoustics 2012 Nantes, Nantes, France (2012), pp. 2659-2664

[3] A. Nayfeh The general problem of elastic wave propagation in multilayered anisotropic media, J. Acoust. Soc. Am. (1991), pp. 1521-1531 | DOI

[4] B. Sinha; H. P. Valero; F. Karpfinger; A. Bakulin; B. Gurevich Spectral-method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures, Geophysics, Volume 75 (2010), p. H19-H27

[5] G. Waas (“Analysis report for footing vibrations through layered media”, PhD Thesis, University of California, 1972)

[6] Z. A. B. Ahmad; J. M. Vivar-Perez; U. Gabbert Semi-analytical finite element method for modeling of lamb wave propagation, CEAS Aeronaut. J., Volume 4 (2013), pp. 21-33 | DOI

[7] I. Bartoli; M. Alessandro; L. Francesco; V. Erasmo Modeling wave propagation in damped waveguides of arbitrary cross-section, J. Sound Vibrat., Volume 295 (2006), pp. 685-707 | DOI

[8] H. Takahiro; K. Koichiro; S. Zongqi; L. Joseph Analysis of flexural mode focusing by a semi analytical finite element method, J. Acoust. Soc. Am., Volume 113 (2003), pp. 1241-1248

[9] H. Takahiro; S. Won-Joon; L. Joseph Rose Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example, Ultrasonics, Volume 41 (2003), pp. 175-183

[10] M. Osama; D. Subhendu Mukdadi Transient ultrasonic guided waves in layered plates with rectangular cross section, J. Appl. Phys., Volume 93 (2003), pp. 9360-9363

[11] P. Mihai Valentin Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code, Ultrasonics, Volume 54 (2014), pp. 1825-1831

[12] D. Wenbo; K. Ray Guided wave propagation in buried and immersed fluid-filled pipes: Application of the semi analytic finite element method, Comput. Struct., Volume 212 (2019), pp. 236-247

[13] B. Xing; Y. Zujun; X. Xining; Z. Liqiang; S. Hongmei Research on a rail defect location method based on a single mode extraction algorithm, Appl. Sci., Volume 9 (2019), pp. 1-16 | DOI

[14] B. Pavlakovic; M. Lowe; D. Alleyne; P. Cawley Disperse: A general purpose program for creating dispersion curves, Review of Progress in Quantitative NDE, Springer, Boston, MA, 2013, pp. 185-192

[15] Ruth Sanderson A closed form solution method for rapid calculation of guided wave dispersion curves for pipes, Wave Motion, Volume 53 (2015), pp. 40-50 | DOI | Zbl

[16] Lina Draudvilienė; Renaldas Raišutis; Egidijus Žukauskas; Audrius Jankauskas Validation of dispersion curve reconstruction techniques for the A0 and S0 modes of lamb waves, Inti J. Struct. Stability Dyn., Volume 14 (2014), pp. 1-11

[17] Borja Hernandez Crespo; Charles R. P. Courtney; Bhavin Engineer Calculation of guided wave dispersion characteristics using a three-transducer measurement system, Appl. Sci., Volume 8 (2018), p. 1253 | DOI

[18] Borja Hernandez; Bhavin Engineer; C. R. P. Courtney Empirical technique for dispersion curve creation for guided wave applications, Conference: 8th European Workshop on Structural Health Monitoring, EWSHM, Spain (2016)

[19] Slim Soua; Septimonette Chan; Tat-Hean Gan Modelling of long range ultrasonic waves in complex structures, BINDT Annual Conference, UK (2008)

[20] M. Jose; A. Ramon Galan Numerical simulation of Lamb wave scattering in semi-infinite plates, Int. J. Numer. Meth. Engng, Volume 53 (2002), pp. 1145-1173

[21] Feng Zhu; Bin Wang; Zhenghua Qian; Ernian Pan; I. E. Kuznetsova Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates, Intl J. Solids Struct., Volume 150 (2018), pp. 52-65

[22] F. G. Lei Wang Yuan, Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments, Composit. Sci. Technol., Volume 67 (2007), pp. 1370-1384

[23] K. Autar Kaw Mechanics of Composite Materials, CRC Press, 2006

Cited by Sources:

Comments - Policy


Articles of potential interest

Propagation d'ondes élastiques au sein d'un guide d'ondes élastiques anisotrope à gradient unidirectionnel sous chargement fluide

Cécile Baron; Salah Naili

C. R. Méca (2008)


Solitary SH waves in two-layered traction-free plates

Irini Djeran-Maigre; Sergey Kuznetsov

C. R. Méca (2008)


Sur le remodelage des tissus osseux anisotropes

Antonio DiCarlo; Salah Naili; Sara Quiligotti

C. R. Méca (2006)