In order to analyze the stability of gravity–capillary short-crested waves propagating at the interface of two fluids of infinite depths, a numerical procedure has been developed using a collocation method. The three-dimensional wave is generated by an oblique reflection of a uniform wave train arriving at a vertical wall at some angle of incidence
Révisé le :
Accepté le :
Publié le :
Sara Chikhi 1 ; Mohammed Debiane 1 ; Nabil Allalou 1

@article{CRMECA_2022__350_G1_191_0, author = {Sara Chikhi and Mohammed Debiane and Nabil Allalou}, title = {On the sub-harmonic instabilities of three-dimensional interfacial gravity{\textendash}capillary waves in infinite depths}, journal = {Comptes Rendus. M\'ecanique}, pages = {191--203}, publisher = {Acad\'emie des sciences, Paris}, volume = {350}, year = {2022}, doi = {10.5802/crmeca.111}, language = {en}, }
TY - JOUR AU - Sara Chikhi AU - Mohammed Debiane AU - Nabil Allalou TI - On the sub-harmonic instabilities of three-dimensional interfacial gravity–capillary waves in infinite depths JO - Comptes Rendus. Mécanique PY - 2022 SP - 191 EP - 203 VL - 350 PB - Académie des sciences, Paris DO - 10.5802/crmeca.111 LA - en ID - CRMECA_2022__350_G1_191_0 ER -
%0 Journal Article %A Sara Chikhi %A Mohammed Debiane %A Nabil Allalou %T On the sub-harmonic instabilities of three-dimensional interfacial gravity–capillary waves in infinite depths %J Comptes Rendus. Mécanique %D 2022 %P 191-203 %V 350 %I Académie des sciences, Paris %R 10.5802/crmeca.111 %G en %F CRMECA_2022__350_G1_191_0
Sara Chikhi; Mohammed Debiane; Nabil Allalou. On the sub-harmonic instabilities of three-dimensional interfacial gravity–capillary waves in infinite depths. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 191-203. doi : 10.5802/crmeca.111. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.111/
[1] On the subharmonic instabilities of steady three-dimensional deep water waves, J. Fluid Mech., Volume 262 (1994), pp. 265-291 | DOI
[2] Fourth order approximation of short-crested waves, C. R. Acad. Sci. Paris, Volume 316 (1993), pp. 1193-1200
[3] On two approaches to the problem of instability of short-crested water waves, J. Fluid Mech., Volume 303 (1995), pp. 297-326 | DOI | MR | Zbl
[4] Stability of periodic waves of finite amplitude on the surface of a deep, fluid, J. Appl. Mech. Tech. Phys. (USSR), Volume 2 (1968), pp. 190-194 | DOI
[5] Stability regimes of finite depth short-crested water waves, J. Phys. Oceanogr., Volume 29 (1999), pp. 2318-2331 | DOI
[6] Instabilities of steep short-crested surface waves in deep water, Phys. Fluids, Volume 11 (1999), pp. 1679-1681 | DOI | MR | Zbl
[7] Structure of the Instability associated with harmonic resonance of short-crested waves, J. Phys. Oceanogr., Volume 32 (2002), pp. 1331-1337 | DOI | MR
[8] On the superharmonic instability of nonlinear three-dimensional interfacial waves of two infinite layers, Eur. J. Mech. B Fluids, Volume 59 (2016), pp. 135-139 | DOI | MR | Zbl
[9] On the dynamics of unsteady gravity waves of finite amplitude, J. Fluid Mech., Volume 9 (1960), pp. 193-217 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique