Comptes Rendus
Experimental and Computational Fluid Dynamics: decades of turbulent EFD/CFD complementarity
Comptes Rendus. Mécanique, Online first (2022), pp. 1-14.

An overview of the parallel evolution of computations and experiments in fluid dynamics in the context of turbulent flows is given, viewed from an experimental side. It is evident that experiments can no longer be seen as only validations for computations and that forecasting for “numerical wind tunnels” is not yet valid. The growing evidence of organized motions in turbulent flows pushes in parallel both experiments and numerical approaches to develop new measurement technologies and numerical methods. Many tools and concepts are shared both by experiments and computations. These approaches appear to be quite complementary and both communities will gain from the mutual fertilization.

Une mise en perspective de l’évolution parallèle des calculs et des expériences en dynamique des fluides en régime turbulent est présentée depuis un point de vue d’expérimentateur. Il apparait que les expériences ne peuvent pas être considérées comme de simples éléments de validation des calculs et que la prédiction de l’avenir des «  souffleries numériques  » n’est actuellement pas pertinente. La mise en évidence de l’importance du caractère organisé des écoulements turbulents a conduit au développement quasi parallèle des technologies des approches expérimentales et des méthodes numériques. De nombreux outils et concepts sont partagés par les expérimentateurs et les numériciens. Ces approches apparaissent très complémentaires et les deux communautés devraient profiter de leurs complémentarités pour accroitre les échanges dans une fertilisation mutuelle.

Received:
Accepted:
Online First:
DOI: 10.5802/crmeca.113
Keywords: Computational fluid dynamics, Experiments, Turbulence, DNS, LES, HWA, PIV
Mot clés : Mécanique des fluides numérique, Expériences, Turbulence, DNS, LES, HWA, PIV

Jean Paul Bonnet 1

1 Institut Pprime, UPR3346 CNRS—Université de Poitiers—ISAE/ENSMA, Site du Futuroscope Bat. H2 TSA 51124, 86073 POITIERS cedex 9, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_A2_0,
     author = {Jean Paul Bonnet},
     title = {Experimental and {Computational} {Fluid} {Dynamics:} decades of \protect\emph{turbulent} {EFD/CFD} complementarity},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.113},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Jean Paul Bonnet
TI  - Experimental and Computational Fluid Dynamics: decades of turbulent EFD/CFD complementarity
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.113
LA  - en
ID  - CRMECA_2022__350_S1_A2_0
ER  - 
%0 Journal Article
%A Jean Paul Bonnet
%T Experimental and Computational Fluid Dynamics: decades of turbulent EFD/CFD complementarity
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.113
%G en
%F CRMECA_2022__350_S1_A2_0
Jean Paul Bonnet. Experimental and Computational Fluid Dynamics: decades of turbulent EFD/CFD complementarity. Comptes Rendus. Mécanique, Online first (2022), pp. 1-14. doi : 10.5802/crmeca.113.

[1] S. Bryson; C. Levit The virtual wind tunnel: An environment for the exploration of three-dimensional unsteady flows (1991) no. RNR-92-013 (Technical report)

[2] Y. Matsumo Numerical wind tunnel: History and evolution of supercomputing, Fujitsu Sci. Tech. J., Volume 53 (2017) no. 3, pp. 15-23

[3] A. Smits; J. P. Dussauge Turbulent Shear Layers in Supersonic Flow, Springer, New York, 2006

[4] T. B. Gatski; J. P. Bonnet Compressibility, Turbulence and High Speed Flows, Academic Press, Oxford, Amsterdam, 2013 (ISBN 9780123970275)

[5] R. E. Falco Coherent motions in the outer region of turbulent boundary layers, Phys. Fluids, Volume 20 (1977), p. S124-S132 | DOI

[6] G. L. Brown; A. Roshko On density effects and large structure in turbulent mixing layers, J. Fluid Mech., Volume 64 (1974) no. 1, pp. 775-816 | DOI | Zbl

[7] G. Comte; G. Bellot Hot-wire anemometry, Annu. Rev. Fluid Mech., Volume 8 (1976), pp. 209-231 | DOI

[8] H. H. Bruun Hot-wire Anemometry: Principles and Signal Analysis, Oxford Unversity Press, Berlin, 1995 | DOI

[9] Springer Handbook of Experimental Fluid Mechanics (C. Tropea; A. L. Yarin; J. F. Foss, eds.), Springer, Berlin, 2007 | DOI

[10] K. Hanjalić; B. E. Launder Reassessment of modeling turbulence via Reynolds averaging: A review of second-moment transport strategy, Phys. Fluids, Volume 33 (2021), 091302 | DOI

[11] S. J. Kline AFORS-HTTM-Stanford Conference on Complex Turbulent Flows: 1980-1981 Comparison of Computation and Experiments, Department of Mechanical, Stanford University, Stanford, USA, 1982 (ISBN 978-0960734832)

[12] A. K. M. F. Hussain; W. C. Reynolds The mechanics of an organized wave in turbulent shear flow, J. Fluid Mech., Volume 41 (1970) no. 2, pp. 241-258 | DOI

[13] B. J. Cantwell Organized motion in turbulent flow, Annu. Rev. Fluid Mech., Volume 13 (1981) no. 1, pp. 457-515 | DOI

[14] A. K. M. F. Hussain Coherent structures - Reality and myth, Phys. Fluids, Volume 26 (1983), pp. 2816-2850 | DOI | Zbl

[15] R. J. Adrian Twenty years of particle image velocimetry, Exp. Fluids, Volume 39 (2005) no. 2, pp. 159-169 | DOI

[16] M. Stanislas; K. Okamoto; C. J. Kähler; J. Westerweel Main results of the second international PIV challenge, Exp. Fluids, Volume 39 (2005) no. 2, pp. 170-191 | DOI

[17] P. Bergé; Y. Pomeau; C. Vidal L’ordre dans le chaos : vers une approche déterministe de la turbulence, Hermann, Paris, 1984 (ISBN 978-2-7056-5980-6)

[18] M. Lesieur; O. Metais; P. Comte Large-Eddy Simulations of Turbulence, Cambridge University Press, 2005 (ISBN 0521 78124 8) | DOI

[19] H. Ha Minh Modélisation et simulation des écoulements en situations industrielles. Exposé de synthèse, La Houille Blanche, Volume 73 (1987) no. 7/8, pp. 555-562

[20] P. Sagaut Large Eddy Simulation for Incompressible Flows: An Introduction, Springer Verlag, Berlin, Heidelberg, 2006 (ISBN 978-3-540-26344-9)

[21] P. Moin; K. Mahesh Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 539-578 | DOI | MR | Zbl

[22] Eddy Structure Identification in Free Turbulent Shear Flows (J. P. Bonnet; M. N. Glauser, eds.), Springer, Dordrecht, 1993 (ISBN: 9780792324492) | DOI

[23] M. Farge Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., Volume 24 (1992), pp. 395-457 | DOI | MR | Zbl

[24] M. Farge; G. Pellegrino; K. Schneider Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets, Phys. Rev. Lett., Volume 87 no. 5, 054501 | DOI

[25] P. Jordan; T. Colonius Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., Volume 45 (2013) no. 1, pp. 173-195 | DOI | MR | Zbl

[26] J. H. Citriniti; W. K. George Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition, J. Fluid Mech., Volume 418 (2000), pp. 137-166 | DOI | Zbl

[27] M. Tutkun; W. George; J. Delville; J. M. Foucault; S. Coudert; M. Stanislas Space-time correlations from a 143 hot-wire rake in a high reynolds number turbulent boundary layer, 5th AIAA Theoretical Fluid Mechanics Conference Session: TFM-6: Turbulent Boundary Layers I, paper 2008-4239, 2008

[28] Experimental Aerodynamics: An Introductory Guide (B. Chanetz; J. Délery; P. Gilliéron; P. Gnemmi; E. R. Gowree, eds.), Springer, Cham, 2020 (ISBN 3030355616) | DOI

[29] I. Marusic; B. J. McKeon; P. A. Monkewitz; H. M. Nagib; A. J. Smits; K. R. Sreenivasan Wall bounded turbulent flows at high Reynolds numbers: Recent advances and key issues, Phys. Fluids, Volume 22 (2010), 065103 | DOI | Zbl

[30] A. J. Smits; B. J. McKeon; I. Marusic High–Reynolds number wall turbulence, Annu. Rev. Fluid Mech., Volume 43 (2011), pp. 353-375 | DOI | Zbl

[31] G. Schewe; N. P. van Hinsberg; M. Jacobs Investigation of the steady and unsteady forces acting on a pair of circular cylinders in crossflow up to ultra-high Reynolds numbers, Exp. Fluids, Volume 62 (2021), 176 | DOI

[32] M. Lee; R. Moser Direct numerical simulations of trubulent channel flows up to Re τ 5200, J. Fluid Mech., Volume 774 (2015), pp. 395-415

[33] L. Agostini; M. Leschziner The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at Re τ   1000, J. Fluid Mech., Volume 871 (2019), pp. 22-51 | MR | Zbl

[34] J. Borée; P. C. Miles In-cylinder flow, Encyclopedia of Automotive Engineering, John Wiley & Sons, 2014 | DOI

[35] G. Berkooz; P. J. Holmes; J. Lumley The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., Volume 25 (2003) no. 1, pp. 539-575 | DOI

[36] C. W. Rowley; S. T. M. Dawson Model reduction for flow analysis and control, Annu. Rev. Fluid Mech., Volume 49 (2017) no. 1, pp. 387-417 | DOI | MR | Zbl

[37] S. Beneddine; R. Yegavian; D. Sipp; B. Leclaire Unsteady flow dynamics reconstruction from mean flow and point sensors: an experimental study, J. Fluid Mech., Volume 824 (2017), pp. 174-201 | DOI

[38] T. Suzuki; H. Ji; F. Yamamoto Unsteady PTV velocity field past an airfoil solved with DNS, Exp. Fluids, Volume 47 (2009), pp. 957-976 | DOI

[39] T. Suzuki; L. Chatellier; Y. Jin Jeon; L. David Unsteady pressure estimation and compensation capabilities of the hybrid simulation combining PIV and DNS Mech. 41(02), Meas. Sci. Technol., Volume 29 (2018) no. 12, pp. 241-258 | DOI

[40] L. Perret; J. Delville; R. Manceau; J. P. Bonnet Generation of turbulent inflow conditions for large Eddy simulation from steroscopic PIV measurements, Int. J. Heat Fluid Flow, Volume 27 (2006), pp. 576-584 | DOI

[41] J. M. Foucaut; W. K. George; M. Stanislas; C. Cuvier Optimization of a SPIV experiment for derivative moments assessment in a turbulent boundary layer, Exp. Fluids, Volume 62 (2021), pp. 244-259 | DOI

[42] G. Rubino; M. Visonneau Towards the modeling of laminar to turbulence transition for incompressible flows, 22st Numerical Towing Tank Symposium (NuTTS 2019), October 2019, Tomar, Portugal, 2019 (hal-02873474)

[43] L. Jacquin; D. Fabre; D. Sipp; E. Coustols Unsteadiness, instability and turbulence in trailing vortices, Mec. Ind., Volume 2 (2001), pp. 421-434

[44] B. J. Geurts Direct and Large-Eddy Simulation, De Gruyter Series in Computational Science and Engineering, De Gruyter, Berlin, Boston, 2022

[45] J. P. Bonnet; N. Qin Active flow control strategies and tools for turbulent flows, Advances in Effective Flow Separation Control for Aircraft Drag Reduction: Modeling, Simulations and Experimentations (N. Qin; J. Periaux; G. Bugeda, eds.), Springer, Cham, 2020, pp. 1-26

[46] Flow Control: Fundamentals and Practices (M. Gad-el-Hak; A. Pollard; J. P. Bonnet, eds.), Springer-Verlag, Berlin, 1998 (ISBN 3540639367) | DOI | Zbl

[47] M. Gad-el-Hak Flow Control: Passive, Active and Reactive Flow Management, Cambridge University Press, Cambridge, UK, 2000 | DOI

[48] L. N. Cattafesta III; M. Sheplak Actuators for active flow control, Annu. Rev. Fluid Mech., Volume 43 (2011) no. 1, pp. 247-272 | DOI | Zbl

[49] Reduced-Order Modelling for Flow Control (B. R. Noack; M. Morzynski; G. Tadmor, eds.), Springer, Vienna, 2011 | Zbl

[50] S. L. Brunton; B. R. Noack; P. Koumoutsakos Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., Volume 52 (2020), pp. 477-508 | DOI | Zbl

[51] E. Moreau Airflow control by non-thermal plasma actuators, J. Phys. D: Appl. Phys., Volume 40 (2007) no. 3, pp. 605-636 | DOI

[52] N. Benard; S. Laizet; E. Moreau PIV-based dynamic model of EHD volume force produced by a surface dielectric barrier discharge. AIAA paper 2017-1579, 55th AIAA Aerospace Sciences, AIAA, Grapeville, TX, 2017 | DOI

[53] T. Brauner; S. Laizet; N. Bénard; E. Moreau Modelling of dielectric barrier discharge plasma actuators for direct numerical simulations, 8th AIAA Flow Control Conference, AIAA, Washington, 2016 | DOI

[54] E. Laurendeau; P. Jordan; J. P. Bonnet; J. Delville; P. Parnaudeau; E. Lamballais Subsonic jet noise reduction by fluidic control: The interaction region and the global effect, Phys. Fluids, Volume 20 (2008), 101519 | DOI | Zbl

[55] C. Bailly; C. Bogey Contributions of computational aeroacoustics to jet noise research and prediction, Int. J. Comput. Fluid Dynam., Volume 18 (2004) no. 6, pp. 481-491 | DOI | Zbl

[56] E. Coustols; J. Cousteix Performances of riblets in the supersonic regime, AIAA J., Volume 32 (1994) no. 2, pp. 431-433 | DOI

[57] A. Bannier Contrôle de la traînée de frottement d’une couche limite turbulente au moyen de revêtements rainurés de type riblets, Thèse, Univ. Paris 6 (2016)

[58] A. Bannier; E. Garnier; P. Sagaut Friction drag reduction achievable by near-wall turbulence manipulation in spatially developing boundary-layer, Phys. Fluids, Volume 28 (2016), 035108 | DOI

[59] G. Jodin; J. Scheller; E. Duhayon; J.-F. Rouchon; M. Braza Implementation of a hybrid electro-active actuated morphing wing in wind tunnel, Solid State Phenomena, Trans Tech Publications Ltd, Volume 260, 2017, pp. 85-91 | DOI

[60] N. Simiriotis; G. Jodin; A. Marouf; P. Elyakime; Y. Hoarau; J. C. R. Hunt; J. F. Rouchon; M. Braza Morphing of a supercritical wing by means of trailing edge deformation and vibration at high Reynolds numbers: Experimental and numerical investigation, J. Fluids Struct., Volume 91 (2019), pp. 102676-102698 | DOI

[61] J. B. Tô; N. Bhardwaj; N. Simiriotis; A. Marouf; Y. Hoarau; J. R. C. Hunt; M. Braza Manipulation of a shock-wave/boundary-layer interaction in the transonic regime around super-critical morphing wing, Symposium on Fluid-Structure-Sound Interactions and Control, FSSIC2019, 27-30 August 2019, Chania, Greece, Chania, Greece, 2021 | DOI

[62] J. Dandois; P. Molton; A. Lepage; A. Geeraert; V. Brunet; J.-B. Dor; E. Coustols Buffet characterization and control for turbulent wings, The ONERA Journal Aerospace Lab, Volume 6 (2013), pp. 1-17

Cited by Sources:

Comments - Policy