Comptes Rendus
Turbulence modeling and simulation advances in CFD during the past 50 years
Comptes Rendus. Mécanique, Online first (2022), pp. 1-29.

This paper is a short retrospective review of the predictive methods of turbulent flows in Computational Fluid Dynamics over the last 50 years since the first development of computers. The different schools of turbulence modeling are presented with the aim to guide both users and researchers involved in numerical simulation of turbulent flows.

Received:
Accepted:
Online First:
DOI: 10.5802/crmeca.114
Keywords: Turbulence, Turbulence modeling, Reynolds averaged Navier Stokes, Large Eddy simulation, Hybrid RANS/LES methods, Spectral methods, Computational fluid dynamics

Roland Schiestel 1; Bruno Chaouat 2

1 IRPHE/CNRS, 13384 Marseille, France
2 ONERA, Université Paris-Saclay, 92322 Châtillon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_A3_0,
     author = {Roland Schiestel and Bruno Chaouat},
     title = {Turbulence modeling and simulation advances in {CFD} during the past 50 years},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.114},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Roland Schiestel
AU  - Bruno Chaouat
TI  - Turbulence modeling and simulation advances in CFD during the past 50 years
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.114
LA  - en
ID  - CRMECA_2022__350_S1_A3_0
ER  - 
%0 Journal Article
%A Roland Schiestel
%A Bruno Chaouat
%T Turbulence modeling and simulation advances in CFD during the past 50 years
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.114
%G en
%F CRMECA_2022__350_S1_A3_0
Roland Schiestel; Bruno Chaouat. Turbulence modeling and simulation advances in CFD during the past 50 years. Comptes Rendus. Mécanique, Online first (2022), pp. 1-29. doi : 10.5802/crmeca.114.

[1] B. Geurts Elements of Direct and Large-Eddy Simulation, R. T. Edwards Publ, 2004

[2] R. Schiestel Modeling and Simulation of Turbulent Flows, ISTE, London,UK and John Wiley & Sons, Hoboken, NJ, USA, 2010

[3] K. Hanjalić; B. Launder Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure, Cambridge University Press, Cambridge, UK, 2011 | DOI

[4] D. C. Wilcox Turbulence Modeling for CFD, DCW industries La Canada, California, 1998

[5] S. Pope Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000 | DOI

[6] M. Lesieur; O. Métais; P. Comte Large-Eddy Simulations of Turbulence, Cambridge University Press, Cambridge, UK, 2005 | DOI

[7] P. Spalart; V. Venkatakrishnani On the role and challenges of CFD in the aerospace industry, Aeronaut. J., Volume 120 (2016) no. 1223, pp. 209-232 | DOI

[8] P. Tucker; J. Tyacke Eddy resolving simulations in aerospace – Invited paper (Numerical Fluid, 2014), Appl. Math. Comput., Volume 272 (2016) no. 3, pp. 582-592 | MR | Zbl

[9] J. Fröhlich; D. Von Terzi Hybrid LES/RANS methods for the simulation of turbulent flows, Prog. Aerosp. Sci., Volume 44 (2008) no. 5, pp. 349-377 | DOI

[10] B. Chaouat The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows, Flow Turbul. Combust., Volume 99 (2017) no. 2, pp. 279-327 | DOI

[11] S. Heinz A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications, Prog. Aerosp. Sci., Volume 114 (2020), 100597, pp. 1-25 | DOI

[12] P. Sagaut; C. Cambon Homogeneous Turbulence Dynamics, Springer International Publishing, Cham, Switzerland, 2018 | DOI

[13] D. Jeandel; J. F. Brison; J. Mathieu Modeling methods in physical and spectral space, Phys. Fluids, Volume 21 (1978) no. 2, pp. 169-182 | DOI | MR | Zbl

[14] M. Germano Turbulence. The filtering approach, J. Fluid Mech., Volume 238 (1992) no. 1, pp. 325-336 | DOI | MR | Zbl

[15] M. Iovieno; D. Tordella Variable scale filtered Navier–Stokes equations: A new procedure to deal with the associated commutation error, Phys. Fluids, Volume 15 (2003) no. 7, pp. 1926-1936 | DOI | MR | Zbl

[16] B. Chaouat; R. Schiestel Partially integrated transport modeling method for turbulence simulation with variable filters, Phys. Fluids, Volume 25 (2013), pp. 1-39 | DOI

[17] B. Chaouat Commutation errors in PITM simulations, Int. J. Heat Fluid Flow, Volume 67 (2017), pp. 138-154 | DOI

[18] B. J. Geurts; D. D. Holm Commutator errors in large-eddy simulation, J. Phys. A: Math. Gen., Volume 39 (2006) no. 9, pp. 2213-2229 | DOI | MR | Zbl

[19] G. I. Taylor Eddy motion in the atmosphere, Phil. Trans. R. Soc. A, Volume 215 (1915), pp. 1-26

[20] L. Prandtl Bericht Über Untersuchungen zur ausgebildeten Turbulenz, ZAMM, Volume 5–2 (1925), pp. 136-139 | DOI | Zbl

[21] G. I. Taylor The transport of vorticity and heat through fluids in turbulent motion, Proc. R. Soc. A, Volume 135–828 (1932), pp. 685-702 (Appendix by A. Fage and V. M. Falkner)

[22] L. Prandtl Bemerkung zur Theories der freien Turbulenz, ZAMM, Volume 22–5 (1942), pp. 241-243 | DOI | MR | Zbl

[23] H. Reichardt Gesetzmässigkeiten der freien Turbulenz, VDI-Forschungsh., Volume 414 (1951), pp. 1-30

[24] G. N. Abramovich The Theory of Turbulent Jets, MIT Press, Cambridge, 1963

[25] S. Kline; G. Sovran; M. Morkovin; D. Cockrell Proceedings: Computation of turbulent boundary layers, Methods, Predictions, Evaluation and Flow Structure (1968 AFOVR-IFP Stanford Conference), Volume 1, Stanford University Press, California, 1969

[26] E. R. Van Driest On turbulent flow near a wall, J. Aeronaut. Sci., Volume 23 (1956) no. 11, pp. 1007-1011 | DOI | Zbl

[27] S. V. Patankar; D. B. Spalding Heat and Mass Transfer in Boundary Layers, A General Calculation Procedure, Intertex Books, London, UK, 1970

[28] L. Prandtl Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. Akad. Wiss. Göttingen Math-Phys., Volume K1 (1945), pp. 6-19 | MR | Zbl

[29] P. Bradshaw; D. Ferriss; N. Atwell Calculation of boundary-layer development using the turbulent energy equation, J. Fluid Mech., Volume 28 (1967) no. 3, pp. 593-616 | DOI

[30] A. D. Gosman; W. M. Pun; A. K. Runchal; D. B. Spalding; M. Wolfshtein Heat and Mass Transfer in Recirculating Flows, Academic Press, London, 1969

[31] S. V. Patankar Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Pub. Corp. and Mc Graw Hill B.C., New York, 1980

[32] W. Jones; B. E. Launder The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, Volume 15 (1972) no. 2, pp. 301-314 | DOI

[33] B. J. Daly; F. H. Harlow Transport equations in turbulence, Phys. Fluids, Volume 13 (1970) no. 11, pp. 2634-2649 | DOI

[34] D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., Volume 26 (1988) no. 11, pp. 1299-1310 | DOI | MR | Zbl

[35] F. R. Menter Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., Volume 32 (1994) no. 8, pp. 1598-1605 | DOI

[36] S. Pope An explanation of the turbulent round-jet/plane-jet anomaly, AIAA J., Volume 16 (1978) no. 3, pp. 279-281 | DOI

[37] C. R. Yap Turbulent heat and momentum transfer in recirculating and impinging flows, Ph. D. Thesis, UMIST, University of Manchester, UK (1987) (TFD/87/1)

[38] J. C. Rotta Statistische Theorie nichthomogener Turbulenz I, Z. Phys., Volume 129 (1951) no. 6, pp. 547-572 | MR | Zbl

[39] J. C. Rotta Statistische Theorie nichthomogener Turbulenz II, Z. Phys., Volume 131 (1951) no. 1, pp. 51-77 | MR | Zbl

[40] W. Rodi; D. B. Spalding A two-parameter model of turbulence, and its application to free jets, Wärme-Stoffübertrag., Volume 3 (1970) no. 2, pp. 85-95 | DOI

[41] B. Smith A near wall model for the kl two equation turbulence model, 25th Fluid Dynamics Conference (AIAA paper 94-2386) (1994), p. 2386 | DOI

[42] D. B. Spalding A two-equation model of turbulence, VDI-Forsch.-Heft, Volume 549 (1972), pp. 5-16 | Zbl

[43] A. Lin; M. F. Wolfshtein Tensorial volume of turbulence, Phys. Fluids, Volume 23 (1980) no. 3, pp. 644-646 | DOI | Zbl

[44] T. Craft; B. Launder; K. Suga Development and application of a cubic eddy-viscosity model of turbulence, Int. J. Heat Fluid Flow, Volume 17 (1996) no. 2, pp. 108-115 | DOI

[45] C. G. Speziale On nonlinear kl and kε models of turbulence, J. Fluid Mech., Volume 178 (1987), pp. 459-475 | DOI

[46] T. Craft; A. Gerasimov; H. Iacovides; B. Launder Progress in the generalization of wall-function treatments, Int. J. Heat Fluid Flow, Volume 23 (2002) no. 2, pp. 148-160 | DOI

[47] K. Suga; T. Craft; H. Iacovides An analytical wall-function for turbulent flows and heat transfer over rough walls, Int. J. Heat Fluid Flow, Volume 27 (2006) no. 5, pp. 852-866 | DOI

[48] B. E. Launder; B. I. Sharma Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Transfer, Volume 1 (1974) no. 2, pp. 131-137 | DOI

[49] V. C. Patel; W. Rodi; G. Scheuerer Turbulence models for near-wall and low Reynolds number flows—a review, AIAA J., Volume 23 (1985) no. 9, pp. 1308-1319 | DOI | MR

[50] K. Hanjalic; B. E. Launder Eddy-viscosity transport modelling: A historical review, 50 Years of CFD in Engineering Sciences: A Commemorative Volume in Memory of D. Brian Spalding (A. Runchal, ed.), Springer, Singapore, SG, 2020, pp. 295-316 | DOI

[51] B. E. Launder Second moment closures: Methodology and practice, Turbulence Models and their Applications—Vol 2: B. E. Launder, W. C. Reynolds, W. Rodi, J. Mathieu and D. Jeandel (Coll. Dir. Etudes et Recherches EDF 56), Eyrolles, Paris, 1984, pp. 1-147 | MR

[52] B. E. Launder; N. D. Sandham Closure Strategies for Turbulent and Transitional Flows, Cambridge University Press, Cambridge, UK, 2002

[53] P. R. Spalart Strategies for turbulence modelling and simulations, Int. J. Heat Fluid Flow, Volume 21 (2000) no. 3, pp. 252-263 | DOI

[54] T. B. Gatski; J. Bonnet Compressibility, Turbulence and High Speed Flow, Academic Press, Elsevier, Amsterdam, Netherlands, 2013

[55] K. Hanjalić Advanced turbulence closure models: a view of current status and future prospects, Int. J. Heat Fluid Flow, Volume 15 (1994) no. 3, pp. 178-203 | DOI

[56] B. E. Launder Second-moment closure: present and future?, Int. J. Heat Fluid Flow, Volume 10 (1989) no. 4, pp. 282-300 | DOI

[57] C. G. Speziale Analytical methods for the development of Reynolds-stress closures in turbulence, Annu. Rev. Fluid Mech., Volume 23 (1991) no. 1, pp. 107-157 | DOI | Zbl

[58] P. A. Durbin Some recent developments in turbulence closure modeling, Annu. Rev. J. Fluid Mech., Volume 50 (2018), pp. 77-103 | DOI | MR | Zbl

[59] J. L. Lumley; B. Khajeh-Nouri Computational modeling of turbulent transport, Adv. Geophys., Volume 18 (1975), pp. 169-192 | DOI

[60] J. L. Lumley Computational modeling of turbulent flows, Advances in Applied Mechanics, Volume 18, Elsevier, Amsterdam, Netherlands, 1979, pp. 123-176 | DOI

[61] C. G. Speziale; R. Abid; P. A. Durbin On the realizability of Reynolds stress turbulence closures, J. Sci. Comput., Volume 9 (1994) no. 4, pp. 369-403 | DOI | Zbl

[62] P. Durbin; C. Speziale Realizability of second-moment closure via stochastic analysis, J. Fluid Mech., Volume 280 (1994), pp. 395-407 | DOI | Zbl

[63] F. Harlow; C. Hirt Generalized transport theory of anisotropic turbulence (1969) no. LA-3854 (Technical report) | DOI

[64] K. Hanjalić; B. Launder A Reynolds stress model of turbulence and its application to thin shear flows, J. Fluid Mech., Volume 52 (1972) no. 4, pp. 609-638 | DOI | Zbl

[65] B. E. Launder; G. J. Reece; W. Rodi Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech., Volume 68 (1975) no. 3, pp. 537-566 | DOI | Zbl

[66] K. Hanjalić; B. Launder Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence, J. Fluid Mech., Volume 74 (1976) no. 4, pp. 593-610 | DOI | Zbl

[67] B. E. Launder; N. Shima Second moment closure for the near wall sublayer: Development and application, AIAA J., Volume 27 (1989) no. 10, pp. 1319-1325 | DOI

[68] B. Chaouat Numerical predictions of channel flows with fluid injection using Reynolds-stress model, J. Propul. Power, Volume 18 (2002) no. 2, pp. 295-303 | DOI

[69] B. Launder; D. Tselepidakis Progress and paradoxes in modelling near-wall turbulence, 8th Symposium on Turbulent Shear Flows, Volume 2 (1991), pp. 29_1_1-29_1_6

[70] W. C. Reynolds Physical and analytical foundations, concepts, and new directions in turbulence modeling and simulation, Turbulence Models and their Applications—Vol 2: B. E. Launder, W. C. Reynolds, W. Rodi, J. Mathieu and D. Jeandel (Coll. Dir. Etudes et Recherches EDF 56), Eyrolles, Paris, 1984, pp. 150-294 | MR

[71] T. H. Shih; J. L. Lumley Modeling of pressure correlation terms in Reynolds stress and scalar flux equations (1985) no. FDA-85-3 (Technical report)

[72] S. Fu; B. E. Launder; D. P. Tselepidakis Accommodating the effects of high strain rates in modeling the pressure strain correlation (1987) no. TFD/87/5 (Technical report)

[73] C. G. Speziale; S. Sarkar; T. B. Gatski Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach, J. Fluid Mech., Volume 227 (1991), pp. 245-272 | DOI | Zbl

[74] T. J. Craft; B. E. Launder A Reynolds stress closure designed for complex geometries, Int. J. Heat Fluid Flow, Volume 17 (1996) no. 3, pp. 245-254 | DOI

[75] N. Shima Low-Reynolds-number second-moment closure without wall-reflection redistribution terms, Int. J. Heat Fluid Flow, Volume 19 (1998) no. 5, pp. 549-555 | DOI

[76] T. Craft Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows, Int. J. Heat Fluid Flow, Volume 19 (1998) no. 5, pp. 541-548 | DOI

[77] G. A. Gerolymos; E. Sauret; I. Vallet Contribution to single-point closure Reynolds-stress modelling of inhomogeneous flow, Theor. Comput. Fluid Dyn., Volume 17 (2004) no. 5, pp. 407-431 | DOI | Zbl

[78] M. Leschziner; F. Lien Numerical aspects of applying second-moment closure to complex flows, Closure Strategies for Turbulent and Transitional Flows (B. E. Launder; N. D. Sandham, eds.), Cambridge University Press, Cambridge UK, 2002, pp. 153-187 | Zbl

[79] S. B. Pope; J. H. Whitelaw The calculation of near wake flows, J. Fluid Mech., Volume 73 (1976) no. 1, pp. 9-32 | DOI

[80] P. Huang; M. Leschziner Stabilization of recirculating flow computations performed with second moment closures and third order discretization, Vth International Symposium on Turbulent Shear Flows, Volume 1, Cornell University, Cornell, Ithaca-NY, USA (1985), p. 20.7-20.12

[81] S. Obi; M. Peric; G. Scheurer A finite volume calculation procedure for turbulent flows with second order closure and collocated variable arrangement, Proceeding of the 7th Symposium on Turbulent Shear Flows, Volume 2, Stanford University, USA (1989), p. 17.4.1-17.4.6

[82] P. Batten; T. Craft; M. Leschziner; H. Loyau Reynolds-stress-transport modeling for compressible aerodynamics applications, AIAA J., Volume 37 (1999) no. 7, pp. 785-797 | DOI

[83] M. Leschziner; P. Batten; T. Craft Reynolds-stress modelling of transonic afterbody flows, Aeronaut. J., Volume 105 (2001) no. 1048, pp. 297-306 | DOI

[84] F. Lien; M. Leschziner Assessment of turbulence-transport models including non-linear RNG eddy-viscosity formulation and second-moment closure for flow over a backward-facing step, Comput. Fluids, Volume 23 (1994) no. 8, pp. 983-1004 | DOI | Zbl

[85] F. Lien; M. Leschziner Modelling 2D separation from a high lift aerofoil with a non-linear eddy-viscosity model and second-moment closure, Aeronaut. J., Volume 99 (1994) no. 984, pp. 125-144

[86] M. Leschziner Reynolds-stress modelling of transonic afterbody flows, Phil. Trans. R. Soc., Volume 358 (2000), pp. 3247-3277

[87] B. Chaouat Simulations of channel flows with effects of spanwise rotation or wall injection using a Reynolds stress model, ASME J. Fluids Eng., Volume 123 (2001), pp. 2-10 | DOI

[88] B. Chaouat Reynolds stress transport modeling for high-lift airfoil flows, AIAA J., Volume 44 (2006) no. 10, pp. 2390-2403 | DOI

[89] S. Jakirlic; B. Eisfeld; R. Jester-Zürker; N. Kroll Near-wall, Reynolds-stress model calculations of transonic flow configurations relevant to aircraft aerodynamics, Int. J. Heat Fluid Flow, Volume 28 (2007) no. 4, pp. 602-615 | DOI

[90] S. Poncet; R. Schiestel Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow, Int. J. Heat Fluid Flow, Volume 50 (2007) no. 7–8, pp. 1528-1544 | Zbl

[91] B. Eisfeld; C. Rumsey; V. Togiti Verification and validation of a second-moment-closure model, AIAA J., Volume 54 (2016) no. 5, pp. 1524-1541 | DOI

[92] W. Rodi A new algebraic relation for calculating the Reynolds stresses, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik (Gesellschaft Angewandte Mathematik und Mechanik Workshop Paris, France), Volume 56, 1976, pp. 219-221 | DOI | Zbl

[93] T. B. Gatski; C. G. Speziale On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech., Volume 254 (1993), pp. 59-78 | DOI | MR | Zbl

[94] P. Durbin; B. Pettersson-Reif On algebraic second moment models, Flow Turbul. Combust., Volume 63 (2000) no. 1, pp. 23-37 | DOI | Zbl

[95] W. Rodi Turbulence Models and their Application in Hydraulics: A State of the Art Review, Balkema Ed., Rotterdam, Netherlands and Brookfield-VT, USA, 1993

[96] S. B. Pope A more general effective-viscosity hypothesis, J. Fluid Mech., Volume 72 (1975) no. 2, pp. 331-340 | DOI | Zbl

[97] S. Wallin; A. Johansson An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, J. Fluid Mech., Volume 403 (2000), pp. 89-132 | DOI | MR | Zbl

[98] V. Yakhot; S. Orszag Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., Volume 1 (1986) no. 1, pp. 3-51 | DOI | MR | Zbl

[99] V. Yakhot; S. Orszag; S. Thangam; T. Gatski; C. Speziale Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A, Volume 4 (1992) no. 7, pp. 1510-1520 | DOI | MR | Zbl

[100] P. Chassaing; R. A. Antonia; F. Anselmet; L. Joly; S. Sarkar Variable Density Fluid Turbulence, Fluid Mechanics and its Applications Series, 69, Springer Science & Business Media, Berlin, Heidelberg, Germany, 2002 | DOI

[101] T. Aurier; C. Rey; J.-F. Sini Second-order turbulence modelling and numerical simulation of volume variable turbulent flows, IUTAM Symposium on Variable Density Low-Speed Turbulent Flows, Springer, Berlin, Heidelberg, Germany (1997), pp. 89-92 | DOI

[102] A. Favre; L. S. G. Kovasznay; R. Dumas; J. Gaviglio; M. Coantic Turbulence in Fluid Mechanics: Theoretical and Experimental Foundations; Statistical Methods, Gauthier-Villars, Editeur, Paris, 1976 (in French)

[103] D. Vandromme; H. H. Minh; J. Viegas; M. Rubesin; W. Kollmann Second order closure for the calculation of compressible wall bounded flows with an implicit Navier–Stokes solver, 4th International Symposium on Turbulent Shear Flows, Karlsruhe, FR Germany (1983)

[104] D. Vandromme Turbulence modeling and implementation in Navier–Stokes solvers, VKI Numerical Methods for Flows in Turbomachinery, Volume 2, Von Karman Institute, Rhode Saint Genese, Belgium, 1989

[105] B. Launder; D. Samaraweera Application of a second-moment turbulence closure to heat and mass transport in thin shear flows—I. Two-dimensional transport, Int. J. Heat Fluid Flow, Volume 22 (1979) no. 12, pp. 1631-1643 | Zbl

[106] T. Craft Second moment modelling of turbulent scalar transport (1993) no. TFD/91/3 (Technical report)

[107] T. B. Gatski Second-moment and scalar flux representations in engineering and geophysical flows, Fluid Dyn. Res., Volume 41 (2009), 012202, pp. 1-24 | DOI | Zbl

[108] M. Kozuka; Y. Seki; H. Kawamura DNS of turbulent heat transfer in a channel flow with a high spatial resolution, Int. J. Heat Fluid Flow, Volume 30 (2009) no. 3, pp. 514-524 | DOI

[109] B. Chaouat; C. Peyret Investigation of the wall scalar fluctuations effect on passive scalar turbulent fields at several Prandtl numbers by means of direct numerical simulations, J. Heat Transfer, ASME, Volume 141 (2019), pp. 1-9

[110] T. Craft; N. Ince; B. Launder Recent developments in second-moment closure for buoyancy-affected flows, Dyn. Atmos. Oceans, Volume 23 (1996) no. 1–4, pp. 99-114 | DOI

[111] Y. Shabany; P. Durbin A new approach to the formulation of scalar flux closure, 1995 (Center for Turbulence Research Annual Research Briefs: 1995)

[112] P. A. Durbin Near-wall turbulence closure modeling without damping functions, Theor. Comput. Fluid Dyn., Volume 3 (1991) no. 1, pp. 1-13 | Zbl

[113] P. A. Durbin A Reynolds stress model for near-wall turbulence, J. Fluid Mech., Volume 249 (1993), pp. 465-498 | DOI

[114] R. Manceau; K. Hanjalić Elliptic blending model: A new near-wall Reynolds-stress turbulence closure, Phys. Fluids, Volume 14 (2002) no. 2, pp. 744-754 | DOI | Zbl

[115] F. Billard; A. Revell; T. Craft Application of recently developed elliptic blending based models to separated flows, Int. J. Heat Fluid Flow, Volume 35 (2012), pp. 141-151 | DOI

[116] R. Schiestel Sur un nouveau modèle de turbulence appliqué aux transferts de quantité de mouvement et de chaleur, Ph. D. Thesis, Thèse Nancy (1974) (CNRS No. AO 10596)

[117] K. Hanjalíc; B. E. Launder; R. Schiestel Multiple time scale concept in turbulent transport modelling, Turbulent Shear Flows (L. J. S. Bradbury et al., eds.), Volume 2, Springer Verlag, Heidelberg, 1980, pp. 36-49 | Zbl

[118] R. Schiestel Multiple scale concept in turbulence modeling, J. Méc. Théor. Appl., Volume 2 (1983) no. 3 and 4 417–449 (Part I) and 601–628 (Part II) (in French) | Zbl

[119] R. Schiestel Multiple-time-scale modeling of turbulent flows in one-point closures, Phys. Fluids, Volume 30 (1988) no. 3, pp. 722-731 | DOI

[120] P. Sagaut; M. Terracol; S. Deck Multiscale and Multiresolution Approaches in Turbulence-LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines, Imperial College Press, World Scient. Publ., London, UK, 2013 | DOI

[121] S. Kenjereš; K. Hanjalić Transient analysis of Rayleigh–Bénard convection with a RANS model, Int. J. Heat Fluid Flow, Volume 20 (1999) no. 3, pp. 329-340 | DOI

[122] A. Mataoui; R. Schiestel; A. Salem Self-sustained oscillations of a turbulent plane jet issuing into a rectangular cavity, Engineering Turbulence Modelling and Experiments 5, Elsevier, Amsterdam, Netherlands, 2002, pp. 393-402 | DOI

[123] B. Chaouat; R. Schiestel Reynolds stress transport modeling for steady and unsteady channel flows with wall injection, J. Turbul., Volume 3 (2002), pp. 1-15 | Zbl

[124] C. Cambon; D. Jeandel; J. Mathieu Spectral modelling of homogeneous non-isotropic turbulence, J. Fluid Mech., Volume 104 (1981), pp. 247-262 | DOI | Zbl

[125] A. S. Monin; A. M. Yaglom Statistical Fluid Mechanics, Volume I: Mechanics of Turbulence (J. L. Lumley, ed.), 1, The MIT Press, Cambridge, Massachusetts, USA, 1987

[126] A. S. Monin; A. M. Yaglom Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence (J. L. Lumley, ed.), 2, The MIT Press, Cambridge, Massachusetts, USA, 1987

[127] M. Lesieur Turbulence in Fluids, Stochastic and Numerical Modelling, Kluwer Academic Publishers, Dordrecht, 1991

[128] S. Parpais; J. Bertoglio A spectral closure for inhomogeneous turbulence applied to turbulent confined flow, Advances in Turbulence VI, Springer, Berlin, Heidelberg, Germany, 1996, pp. 75-76 | DOI

[129] C. Cambon; R. Rubinstein Anisotropic developments for homogeneous shear flows, Phys. Fluids, Volume 18 (2006) no. 18, pp. 1-12 | MR | Zbl

[130] V. Mons; C. Cambon; P. Sagaut A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors, J. Fluid Mech., Volume 788 (2016), pp. 147-182 | DOI | MR | Zbl

[131] A. Briard; B.-J. Gréa; V. Mons; C. Cambon; T. Gomez; P. Sagaut Advanced spectral anisotropic modelling for shear flows, J. Turbul., Volume 19 (2018) no. 7, pp. 570-599 | DOI | MR

[132] S. C. Kassinos; W. C. Reynolds; M. M. Rogers One-point turbulence structure tensors, J. Fluid Mech., Volume 428 (2001), pp. 213-248 | DOI | MR | Zbl

[133] H. Choi; P. Moin Grid-point requirements for large eddy simulation: Chapman’s estimates revisited, Phys. Fluids, Volume 24 (2012) no. 1, 011702, pp. 1-5 | DOI

[134] P. Moin; K. Mahesh Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 539-578 | DOI | MR | Zbl

[135] S. A. Orszag; G. Patterson Jr Numerical simulation of three-dimensional homogeneous isotropic turbulence, Phys. Rev. Lett., Volume 28 (1972) no. 2, pp. 76-79 | DOI

[136] J. W. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., Volume 41 (1970) no. 2, pp. 453-480 | DOI | Zbl

[137] P. Moin; W. Reynolds; J. H. Ferziger Large eddy simulation of incompressible turbulent channel flow (1978) no. N.T.F. 12, NASA NgR 05-020-622 (Technical report)

[138] U. Piomelli Large-eddy simulation: achievements and challenges, Prog. Aerosp. Sci., Volume 35 (1999) no. 4, pp. 335-362 | DOI

[139] M. Lesieur; O. Metais New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech., Volume 28 (1996) no. 1, pp. 45-82 | DOI

[140] S. B. Pope Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys., Volume 6 (2004) no. 1, 35

[141] J. Smagorinsky General circulation experiments with the primitive equations, Mon. Weath. Rev., Volume 91 (1963) no. 3, pp. 99-164 | DOI

[142] D. Lilly The representation of small scale turbulence in numerical simulation experiments, Proceedings of the IBM Scientific Symposium on Environmental Sciences, Volume 320, IBM (1967), pp. 195-210

[143] M. Germano; U. Piomelli; P. Moin; W. H. Cabot A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, Volume 3 (1991) no. 7, pp. 1760-1765 | DOI | Zbl

[144] D. Lilly A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, Volume 4 (1992) no. 3, pp. 633-635 | DOI

[145] J. Fröhlich; C. P. Mellen; W. Rodi; L. Temmerman; M. A. Leschziner Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions, J. Fluid Mech., Volume 526 (2005), pp. 19-65 | DOI | MR | Zbl

[146] J.-P. Chollet; M. Lesieur Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., Volume 38 (1981) no. 12, pp. 2747-2757 | DOI

[147] E. Lamballais; O. Métais; M. Lesieur Spectral-dynamic model for large-eddy simulations of turbulent rotating flow, Theor. Comput. Fluid Dyn., Volume 12 (1998), pp. 149-177 | DOI | Zbl

[148] P. Comte; J. Silvestrini; P. Begou Streamwise vortices in larges-eddy simulations of mixing layers, Eur. J. Mech. B/Fluids, Volume 17 (1998) no. 4, pp. 615-637 | DOI | Zbl

[149] J. Bardina; J. Ferziger; W. Reynolds Improved turbulence models for large eddy simulation, AIAA Paper, Volume 83-1357 (1983), pp. 1-10

[150] A. Yoshizawa; K. Horiuti A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows, J. Phys. Soc. Japan, Volume 54 (1985) no. 8, pp. 2834-2839 | DOI

[151] J. W. Deardorff The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence, ASME J. Fluids Eng., Volume 95 (1973), pp. 429-438 | DOI

[152] R. D. Moser; S. W. Haering; G. R. Yalla Statistical properties of subgrid-scale turbulence models, Annu. Rev. Fluid Mech., Volume 53 (2021), pp. 255-286 | DOI | Zbl

[153] P. Moin; J. Kim Numerical investigation of turbulent channel flow, J. Fluid Mech., Volume 118 (1982), pp. 341-377 | DOI | Zbl

[154] J. Kim; P. Moin; R. Moser Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., Volume 177 (1987), pp. 133-166 | DOI | Zbl

[155] Y. Kaneda; T. Ishihara High-resolution direct numerical simulation of turbulence, J. Turbul., Volume 7 (2007) no. 20, pp. 1-17

[156] A. Lozano-Durán; J. Jiménez Effect of the computational domain on direct simulations of turbulent channels up to Re τ = 4200, Phys. Fluids, Volume 26 (2014), 0117026, pp. 1-7 | DOI

[157] R. D. Lee; M. Moser Direct numerical simulation of turbulent channel up to Re τ 5200, J. Fluid Mech., Volume 774 (2015), pp. 395-415

[158] M. Leschziner; N. Li; F. Tessicini Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier, Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., Volume 367 (2009) no. 1899, pp. 2885-2903 | Zbl

[159] C. D. Argyropoulos; N. C. Markatos Recent advances on the numerical modelling of turbulent flows, Appl. Math. Model., Volume 39 (2015) no. 2, pp. 693-732 | DOI | MR | Zbl

[160] M. L. Shur; P. R. Spalart; M. K. Strelets; A. K. Travin Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems on algebraic second moment models, Flow Turbul. Combust., Volume 93 (2014) no. 1, pp. 63-92 | DOI

[161] B. Chaouat; R. Schiestel From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform, Theor. Comput. Fluid Dyn., Volume 21 (2007) no. 3, pp. 201-229 | DOI | Zbl

[162] F. Hamba Analysis of filtered Navier–Stokes equation for hybrid RANS/LES simulation, Phys. Fluids, Volume 23 (2011) no. 1, 015108 | DOI

[163] F. Hamba Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow, Int. J. Heat Fluid Flow, Volume 30 (2009) no. 1, pp. 20-31 | DOI

[164] C. G. Speziale Turbulence modeling for time-dependent RANS and VLES: a review, AIAA J., Volume 36 (1998) no. 2, pp. 173-184 | DOI | Zbl

[165] P. R. Spalart Detached-eddy simulation, Annu. Rev. Fluid Mech., Volume 41 (2009), pp. 181-202 | DOI | Zbl

[166] P. R. Spalart; W. H. Jou; M. Strelets; S. R. Allmaras Comments on the feasibility of LES for wings, and on hybrid RANS/LES approach, Advances in DNS/LES, 1st AFOSR International Conference (C. Liu; Z. Liu, eds.), Greyden Press, Columbus, Ohio, 1997

[167] P. R. Spalart; S. Deck; M. L. Shur; K. D. Squires; M. K. Strelets; A. Travin A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theor. Comput. Fluid Dyn., Volume 20 (2006) no. 3, pp. 181-195 | DOI | Zbl

[168] P. Spalart; K. Belyaev; A. Garbaruk; M. Shur; M. Strelets; A. Travin Large-eddy and direct numerical simulations of the Bachalo–Johnson flow with shock-induced separation, Flow Turbul. Combust., Volume 99 (2007), pp. 865-885 | DOI

[169] R. Schiestel; A. Dejoan Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations, Theor. Comput. Fluid Dyn., Volume 18 (2005) no. 6, pp. 443-468 | DOI | Zbl

[170] B. Chaouat; R. Schiestel A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows, Phys. Fluids, Volume 17 (2005) no. 6, pp. 65-106 | DOI | MR | Zbl

[171] B. Chaouat; R. Schiestel Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations, Int. J. Heat Fluid Flow, Volume 30 (2009), pp. 602-616 | DOI

[172] B. Chaouat; R. Schiestel Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier–Stokes equations-large eddy simulations of turbulent flows, Phys. Fluids, Volume 24 (2012), 085106, pp. 1-34 | DOI

[173] J. O. Hinze Turbulence, Mc Graw-Hill, New York, USA, 1975, pp. 240-352

[174] B. Chaouat; R. Schiestel Energy partitioning control in the PITM hybrid RANS/LES method for the simulation of turbulent flows, Flow Turbul. Combust., Volume 107 (2021) no. 1, pp. 1-42

[175] I. Befeno; R. Schiestel Non-equilibrium mixing of turbulence scales using a continuous hybrid RANS/LES Approach: Application to the Shearless Mixing Layer, Flow Turbul. Combust., Volume 78 (2007), pp. 129-151 | DOI | Zbl

[176] B. Chaouat Simulation of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method, Phys. Fluids, Volume 24 (2012), 045108, pp. 1-35 | DOI

[177] B. Chaouat Subfilter-scale transport model for hybrid RANS/LES simulations applied to a complex bounded flow, J. Turbul., Volume 51 (2010) no. 11, pp. 1-30

[178] B. Chaouat; R. Schiestel Hybrid RANS-LES simulations of the turbulent flow over periodic hills at high Reynolds number, Comput. Fluids, Volume 84 (2013), pp. 279-300 | DOI | Zbl

[179] C. Rapp; M. Manhart Flow over periodic hills: an experimental study, Exp. Fluids, Volume 51 (2011) no. 1, pp. 247-269 | DOI

[180] M. Stoellinger; R. Roy; S. Heinz Unified RANS-LES method based on second-order closure, Proceedings of the 9th Symposium on Turbulence Shear Flow Phenomena, Volume 7B5, The University of Melbourne (2015), pp. 1-6

[181] B. Chaouat Application of the PITM method using inlet synthetic turbulence generation for the simulation of the turbulent flow in a small axisymmetric contraction, Flow Turbul. Combust., Volume 98 (2017), pp. 987-1024 | DOI

[182] B. Chaouat; R. Schiestel Extension of the partially integrated transport modeling method to the simulation of passive scalar turbulent fluctuations at various Prandtl numbers, Int. J. Heat Fluid Flow, Volume 89 (2021), pp. 1-19

[183] S. S. Girimaji Partially-averaged Navier–Stokes model for turbulence: A Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method, ASME J. Appl. Mech., Volume 73 (2006), pp. 413-421 | DOI | Zbl

[184] S. Girimaji; E. Jeong; R. Srinivasan Partially averaged Navier–Stokes method for turbulence: Fixed point analysis and comparisons with unsteady partially averaged Navier–Stokes, ASME J. Appl. Mech., Volume 73 (2006), pp. 422-429 | DOI | Zbl

[185] F. Pereira; L. Eca; G. Vaz; S. Girimaji Toward predictive RANS and SRS computations of turbulent external flows of practical interest, Arch. Comput. Meth. Eng., Volume 28 (2021) no. 4, pp. 3953-4029 | DOI | MR

[186] E. Jeong; S. Girimaji Partially averaged Navier–Stokes (PANS) method for turbulence simulations—Flow past a square cylinder, ASME J. Fluids Eng., Volume 132 (2010), pp. 1-11

[187] S. Krajnovic; R. Larusson; B. Basara Superiority of PANS compared to LES in predicting a rudimentary landing gear flow with affordable meshes, Int. J. Heat Fluid Flow, Volume 37 (2012), pp. 109-122 | DOI

[188] H. Foroutan; S. Yavuzkurt A partially averaged Navier Stokes model for the simulation of turbulent swirling flow with vortex breakdown, Int. J. Heat Fluid Flow, Volume 50 (2014), pp. 402-416 | DOI

[189] P. Razi; P. Tazraei; S. Girimaji Partially-averaged Navier–Stokes (PANS) simulations of flow separation over smooth curved surfaces, Int. J. Heat Fluid Flow, Volume 66 (2017), pp. 157-171 | DOI

[190] F. Menter; Y. Egorov The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description, Flow Turbul. Combust., Volume 85 (2010) no. 1, pp. 113-138 | DOI | Zbl

[191] Y. Egorov; F. Menter; R. Lechner; D. Cokljat The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows, Flow Turbul. Combust., Volume 85 (2010) no. 1, pp. 139-165 | DOI | Zbl

[192] F. Menter; A. Hüppe; A. Matyushenko; D. Kolmogorov An overview of hybrid RANS-LES models developed for industrial CFD, Appl. Sci., Volume 11 (2021) no. 6, pp. 1-15 | DOI

[193] C. Hirch Numerical Computation of Internal and External Flows, Cambridge University Press, John Wiley & Sons, Elsevier, Oxford, UK and Butterworth-Heinemann, Burlington, USA, 2007

[194] W. Gao; W. Cheng; R. Samtaney Large-eddy simulations of turbulent flow in a channel with streamwise periodic constrictions, J. Fluid Mech., Volume 900 (2020), pp. A1-43 | MR | Zbl

[195] R. Peyret; E. Krause Advanced Turbulent Flow Computations, Springer, Berlin, Heidelberg, Germany, 2000 | DOI

[196] J. H. Ferziger; M. Perić; R. L. Street Computational Methods for Fluid Dynamics, Springer, Berlin, Heidelberg, Germany, 2002 | DOI

[197] S. K. Lele Compact finite difference schemes with spectral-like resolution, Comput. Fluids, Volume 103 (1992), pp. 16-42 | MR | Zbl

[198] R. Peyret; T. D. Taylor Computational Methods for Fluid Flow, Springer Science & Business Media, Berlin, Heidelberg, Germany, 2012

[199] C. Canuto; M. Y. Hussaini; A. Quarteroni; T. A. Zang Spectral Methods in Fluid Dynamics, Springer Science & Business Media, Berlin, Heidelberg, Germany, 2012

[200] R. Peyret Spectral Methods for Incompressible Viscous Flow, 148, Springer Science & Business Media, Berlin, Heidelberg, Germany, 2013

[201] R. Peyret; E. Krause Advanced Turbulent Flow Computations, Springer, Berlin, Heidelberg, Germany, 2000 | DOI

[202] R. Schiestel; S. Viazzo A Hermitian–Fourier numerical method for solving the incompressible Navier–Stokes equations, Comput. Fluids, Volume 24 (1995) no. 6, pp. 739-752 | DOI | Zbl

[203] P. Bontoux; B. Forestier; B. Roux Analyse et optimisation d’une méthode de haute précision pour la résolution des équations de Navier–Stokes instationnaires, J. Mech. Appl., Volume 2 (1978) no. 3, pp. 291-316

[204] E. Vedy; S. Viazzo; R. Schiestel A high-order finite difference method for incompressible fluid turbulence simulations, Int. J. Numer. Methods Fluids, Volume 42 (2003) no. 11, pp. 1155-1188 | DOI | MR | Zbl

[205] M. Leschziner Modeling turbulent recirculating flows by finite-volume methods. Current status and future directions, Int. J. Heat Fluid Flow, Volume 10 (1989), pp. 186-202 | DOI

[206] G. Gerolymos; I. Vallet Mean-flow-multigrid for implicit Reynolds stress model, AIAA J., Volume 43 (2005) no. 9, pp. 1887-1898 | DOI

[207] B. Chaouat An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations, Int. J. Numer. Methods Fluids, Volume 67 (2011) no. 10, pp. 1207-1233 | DOI | MR | Zbl

[208] Y. Mor-Yossef Unconditionally stable time marching scheme for Reynolds stress models, J. Comput. Phys., Volume 276 (2014), pp. 635-664 | DOI | MR | Zbl

[209] Y. Mor-Yossef Robust turbulent flow simulations using a Reynolds-stress-transport model on unstructured grids, Comput. Fluids, Volume 129 (2016), pp. 111-133 | DOI | MR | Zbl

[210] M. Breuer; N. Peller; C. Rapp; M. Manhart Flow over periodic hills–numerical and experimental study in a wide range of Reynolds numbers, Comput. Fluids, Volume 38 (2009) no. 2, pp. 433-457 | DOI | Zbl

[211] L. C. Berselli; T. Iliescu; W. J. Layton Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation Series, Springer, Berlin, Heidelberg, Germany, 2006

[212] P. A. Durbin Turbulence closure models for computational fluid dynamics, Encyclopedia of Computational Mechanics (S. Erwin; R. de Borst; T. J. R. Hughes, eds.), Volume 6, Part 2. Fluids, John Wiley & Sons, Chichester, UK, 2017, pp. 753-774

[213] K. Hanjalić Will RANS survive LES? A view of perspectives, ASME J. Fluids Eng., Volume 127 (2005), pp. 831-839 | DOI

[214] J. Holgate; A. Skillen; T. Craft; A. Revell A review of embedded large eddy simulation for internal flows, Arch. Comput. Meth. Eng., Volume 26 (2019) no. 4, pp. 865-882 | DOI | MR

[215] K. Duraisamy; P. R. Spalart; C. L. Rumsey Status, Emerging Ideas and Future Directions of Turbulence Modeling Research in Aeronautics, National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia, USA, 2017

[216] B. Aupoix; D. Arnal; H. Bézard; B. Chaouat; F. Chedevergne; S. Deck; V. Gleize; P. Grenard; E. Laroche Transition and turbulence modeling, AerospaceLab (2011) no. 2, pp. 1-13

[217] H. Xiao; P. Cinnella Quantification of model uncertainty in RANS simulations: A review, Progr. Aerosp. Sci., Volume 108 (2019), pp. 1-31 | DOI

[218] J. L. Callaham; J. V. Koch; B. W. Brunton; J. N. Kutz; S. L. Brunton Learning dominant physical processes with data-driven balance models, Nat. Commun., Volume 12 (2021) no. 1, pp. 1-10 | DOI

Cited by Sources:

Comments - Policy