Comptes Rendus
Note
Probabilistic representation of helicity in viscous fluids
Comptes Rendus. Mécanique, Volume 350 (2022), pp. 283-295.

It is shown that the helicity of three-dimensional viscous incompressible flow can be identified with the overall linking of the fluid’s initial vorticity to the expectation of a stochastic mean field limit. The relevant mean field limit is obtained by following the Lagrangian paths in the stochastic Hamiltonian interacting particle system of Hochgerner [S. Hochgerner, Proc. R. Soc. A 474 (2018) 20180178].

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.116
Mots clés : Navier–Stokes equations, Stochastic fluid mechanics, Hamiltonian mechanics, Helicity, Interacting particle systems

Simon Hochgerner 1

1 Österreichische Finanzmarktaufsicht (FMA), Otto-Wagner Platz 5, A-1090 Vienna, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2022__350_G2_283_0,
     author = {Simon Hochgerner},
     title = {Probabilistic representation of helicity in viscous fluids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {283--295},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     year = {2022},
     doi = {10.5802/crmeca.116},
     language = {en},
}
TY  - JOUR
AU  - Simon Hochgerner
TI  - Probabilistic representation of helicity in viscous fluids
JO  - Comptes Rendus. Mécanique
PY  - 2022
SP  - 283
EP  - 295
VL  - 350
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.116
LA  - en
ID  - CRMECA_2022__350_G2_283_0
ER  - 
%0 Journal Article
%A Simon Hochgerner
%T Probabilistic representation of helicity in viscous fluids
%J Comptes Rendus. Mécanique
%D 2022
%P 283-295
%V 350
%I Académie des sciences, Paris
%R 10.5802/crmeca.116
%G en
%F CRMECA_2022__350_G2_283_0
Simon Hochgerner. Probabilistic representation of helicity in viscous fluids. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 283-295. doi : 10.5802/crmeca.116. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.116/

[1] H. K. Moffatt The degree of knottedness of tangled vortex lines, J. Fluid Mech., Volume 35 (1969), pp. 117-129 | DOI | Zbl

[2] H. K. Moffatt; R. L. Ricca Helicity and the Călugăreanu invariant, Proc. R. Soc. Lond. A, Volume 439 (1992), pp. 411-429 | Zbl

[3] H. K. Moffatt; A. Tsinober Helicity in laminar and turbulent flow, Annu. Rev. Fluid Mech., Volume 24 (1992), pp. 281-312 | DOI | Zbl

[4] V. I. Arnold Sur la géométrie différentielle de groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Volume 16 (1966) no. 1, pp. 319-361 | DOI | Zbl

[5] J. J. Moreau Constantes d’un îlot tourbillonnaire en fluide parfait barotrope, C. R. Hebd. Séances Acad. Sci., Volume 252 (1961), pp. 2810-2812 | Zbl

[6] M. W. Scheeler; D. Kleckner; D. Proment; G. L. Kindlmann; W. T. M. Irvine Helicity conservation by flow across scales in reconnecting vortex links and knots, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 43, pp. 15350-15355 | DOI

[7] C. Laing; R. Ricca; D. Sumners Conservation of writhe helicity under anti-parallel reconnection, Sci. Rep., Volume 5 (2015), 9224 | DOI

[8] R. Kerr Simulated Navier–Stokes trefoil reconnection (Preprint) | arXiv

[9] R. Kerr Trefoil knot structure during reconnection (Preprint) | arXiv

[10] S. Hochgerner Stochastic mean field approach to fluid dynamics, J. Nonlinear Sci., Volume 28 (2018) no. 2, pp. 725-737 | DOI | MR | Zbl

[11] S. Hochgerner A Hamiltonian mean field system for the Navier–Stokes equation, Proc. R. Soc. A, Volume 474 (2018) no. 2218, 20180178 | DOI | MR | Zbl

[12] S. Hochgerner A Hamiltonian interacting particle system for compressible flow, Water, Volume 12 (2020) no. 8, 2109 | DOI | MR

[13] K. Oelschläger A martingale approach to the law of large numbers for weakly interacting stochastic processes, Ann. Prob., Volume 12 (1984) no. 2, pp. 458-479 | DOI | MR | Zbl

[14] D. Dawson; J. Vaillancourt Stochastic McKean–Vlasov equations, NoDEA, Volume 2 (1995), pp. 199-229 | DOI | MR | Zbl

[15] P. E. Jabin; Z. Wang Mean field limit for stochastic particle systems, Active Particles (N. Bellomo; P. Degond; E. Tadmor, eds.) (Modeling and Simulation in Science, Engineering and Technology), Volume 1, Birkhäuser, Basel, pp. 379-402

[16] P. Constantin; G. Iyer A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math., Volume 61 (2008) no. 3, pp. 330-345 | DOI | MR | Zbl

[17] D. D. Holm Variational principles for stochastic fluid dynamics, Proc. R. Soc. A, Volume 471 (2015) no. 2176, 20140963 | MR | Zbl

[18] V. Arnold; B. Khesin Topological Methods in Hydrodynamics, Springer, New York, 1998 | DOI

[19] D. Ebin; J. E. Marsden Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., Volume 92 (1970) no. 1, pp. 1037-1041 | DOI | MR | Zbl

[20] J. Marsden; D. Ebin; A. Fischer Diffeomorphism groups, hydrodynamics and relativity, Proceedings of the 13th Biennial Seminar of Canadian Mathematical Congress (1972), pp. 135-279 | Zbl

[21] P. Michor Some geometric evolution equations arising as geodesic equations on groups of diffeomorphism, including the hamiltonian approach, Phase Space Analysis of Partial Differential Equations (A. Bove; F. Colombini; D. D. Santo, eds.) (Progress in Non Linear Differential Equations and their Applications), Volume 69, Birkhauser Verlag, Basel, 2006, pp. 133-215 | DOI | MR | Zbl

[22] P. E. Protter Stochastic integration and differential equations, Stochastic Modelling and Applied Probability, Springer, New York, 2005 | MR

[23] N. U. Ahmed; X. Ding A semilinear Mckean–Vlasov stochastic evolution equation in Hilbert space, Stoch. Proc. Appl., Volume 60 (1995) no. 1, pp. 65-85 | DOI | MR | Zbl

[24] P. Constantin; J. La; V. Vicol Remarks on a paper by Gavrilov: Grad–Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications, Geom. Funct. Anal., Volume 29 (2019), pp. 1773-1793 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique