Comptes Rendus
Impact localization on a composite fuselage with a sparse network of accelerometers
Comptes Rendus. Mécanique, Volume 348 (2020) no. 3, pp. 191-209.

This paper focuses on the localization of impacts applied on a composite aircraft by using low sampling frequency accelerometers. A new vibration-based approach using a modal model of the aircraft on ground is described to localize the impact on the cylindrical fuselage. Axial localization is achieved by estimating the contributions of specific vibration modes to the response. Angular localization is achieved by estimating the impact force direction. An impact test campaign is performed on an Airbus A350-900 equipped with only six accelerometers. Fifty percent of the applied impacts are localized within 2 m and more than 90% within 3 m.

Published online:
DOI: 10.5802/crmeca.12
Keywords: Inverse problem, Vibration analysis, Impact localization, Structural health monitoring, Composite fuselage

Dimitri Goutaudier 1, 2; Guillaume Osmond 1; Didier Gendre 3

1 Airbus, Ground Vibration Testing, Toulouse, France
2 Onera, Department of Materials and Structures, Châtillon, France
3 Airbus, Airport Operations, Blagnac, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Dimitri Goutaudier and Guillaume Osmond and Didier Gendre},
     title = {Impact localization on a composite fuselage with a sparse network of accelerometers},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {191--209},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {3},
     year = {2020},
     doi = {10.5802/crmeca.12},
     language = {en},
AU  - Dimitri Goutaudier
AU  - Guillaume Osmond
AU  - Didier Gendre
TI  - Impact localization on a composite fuselage with a sparse network of accelerometers
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 191
EP  - 209
VL  - 348
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.12
LA  - en
ID  - CRMECA_2020__348_3_191_0
ER  - 
%0 Journal Article
%A Dimitri Goutaudier
%A Guillaume Osmond
%A Didier Gendre
%T Impact localization on a composite fuselage with a sparse network of accelerometers
%J Comptes Rendus. Mécanique
%D 2020
%P 191-209
%V 348
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmeca.12
%G en
%F CRMECA_2020__348_3_191_0
Dimitri Goutaudier; Guillaume Osmond; Didier Gendre. Impact localization on a composite fuselage with a sparse network of accelerometers. Comptes Rendus. Mécanique, Volume 348 (2020) no. 3, pp. 191-209. doi : 10.5802/crmeca.12.

[1] W. Cantwell; J. Morton Comparison of the low and high velocity impact response of CFRP, Composites, Volume 20 (1989) no. 6, pp. 545-551 | DOI

[2] S. Abrate Impact on laminated composite materials, Appl. Mech. Rev., Volume 44 (1991) no. 4, pp. 155-190 | DOI

[3] P. Kumar; B. Rai Delaminations of barely visible impact damage in CFRP laminates, Compos. Struct., Volume 23 (1993) no. 4, pp. 313-318 | DOI

[4] M. Rébillat; O. Hmad; F. Kadri; N. Mechbal Peaks Over Threshold–based detector design for structural health monitoring: application to aerospace structures, Struct. Health Monit., Volume 17 (2018) no. 1, pp. 91-107 | DOI

[5] G. Zhao; H. Hu; S. Li; L. Liu; K. Li Localization of impact on composite plates based on integrated wavelet transform and hybrid minimization algorithm, Compos. Struct., Volume 176 (2017), pp. 234-243 | DOI

[6] J. Achenbach Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, 1973 | Zbl

[7] R. Seydel; F.-K. Chang Impact identification of stiffened composite panels: I. System development, Smart Mater. Struct., Volume 10 (2001) no. 2, pp. 354-369 | DOI

[8] J. Frieden; J. Cugnoni; J. Botsis; T. Gmür Low energy impact damage monitoring of composites using dynamic strain signals from fbg sensors – Part I: Impact detection and localization, Compos. Struct., Volume 94 (2012), pp. 438-445 | DOI

[9] P. Shrestha; J.-H. Kim; Y. Park; C.-G. Kim Impact localization on composite wing using 1D array FBG sensor and RMS/correlation based reference database algorithm, Compos. Struct., Volume 125 (2015), pp. 159-169 | DOI

[10] Y. Zhong; J. Xiang; H. Gao; Y. Zhou Impact energy level assessment of composite structures using music-ann approach, Struct. Control Health Monit., Volume 23 (2016), pp. 825-837 | DOI

[11] A. Seno; Z. S. Khodaei; M. F. Aliabadi Passive sensing method for impact localisation in composite plates under simulated environmental and operational conditions, Mech. Syst. Signal Process., Volume 129 (2019), pp. 20-36 | DOI

[12] L. Vladislav; R. Zemcik; T. Kroupa; J. Bartosek Reconstruction of impact force on curved panel using piezoelectric sensors, Proc. Eng., Volume 48 (2012), pp. 367-374

[13] A. El-Bakari; A. Khamlichi; E. Jacquelin; R. Dkiouak Assessing impact force localization by using a particle swarm optimization algorithm, J. Sound Vib., Volume 333 (2014) no. 6, pp. 1554-1561 | DOI

[14] Q. Li; Q. Lu Impact localization and identification under a constrained optimization scheme, J. Sound Vib., Volume 366 (2016), pp. 133-148 | DOI

[15] C. Chena; Y. Lia; F.-G. Yuanb Development of time-reversal method for impact source identification on plate structures, Shock Vib., Volume 20 (2013), pp. 561-573 | DOI

[16] F. Ciampa; M. Meo Impact localization on a composite tail rotor blade using an inverse filtering approach, J. Intell. Mater. Syst. Struct., Volume 25 (2014) no. 15, pp. 1950-1958 | DOI

[17] J. Park; S. Ha; F.-K. Chang Monitoring impact events using a system-identification method, AIAA J., Volume 47 (2009), pp. 2011-2021 | DOI

[18] A. Seno; Z. S. Khodaei; M. F. Aliabadi Partial least square/projection to latent structures (PLS) regression to estimate impact localization in structures, Smart Mater. Struct., Volume 22 (2013) no. 2, 025028

[19] E. D. Niri; S. Salamone A probabilistic framework for acoustic emission source localization in plate-like structures, Smart Mater. Struct., Volume 21 (2012) no. 3, 035009

[20] J. Zhu; S. C. M. Ho; D. Patil; N. Wang; R. Hirsch; G. Song Underwater pipeline impact localization using piezoceramic transducers, Smart Mater. Struct., Volume 26 (2017) no. 10, 107002

[21] D. Goutaudier; D. Gendre; V. Kehr-Candille; R. Ohayon Single-sensor approach for impact localization and force reconstruction by using discriminating vibration modes, Mech. Syst. Signal Process., Volume 138 (2020), 106534 | DOI

[22] J. Doyle Wave Propagation in Structures, Springer, New York, 1989

[23] M. Géradin; D. J. Rixen Mechanical Vibrations - Theory and Application to Structural Dynamics, Wiley, 2015

[24] P. Lubrina; S. Giclais; C. Stéphan; M. Boeswald; Y. Govers; N. Botargues AIRBUS A350 XWB GVT - State of the art techniques to perform a faster and better GVT Campaign, Topics in Modal Analysis II, Volume 8, Springer International Publishing, 2014, pp. 243-256

[25] M. Böswald; D. Göge; U. Füllekrug; Y. Govers A review of experimental modal analysis methods with respect to their applicability to test data of large aircraft structures, Proc. of ISMA 2006, the Int. Conf. on Noise and Vibration Eng., Leuven, Belgium (2006), pp. 2461-2481

[26] M. Mitra; S. Gopalakrishnan Guided wave based structural health monitoring: a review, Smart Mater. Struct., Volume 25 (2016) no. 5, 053001 | DOI

[27] D. Goutaudier Impact identification technique for a structure with weakly damped and well-separated low frequency vibration modes, Ph. D. Thesis, Conservatoire National des Arts et Métiers de Paris (2019)

[28] G. DeFrancisci High energy wide area blunt impact on composite aircraft structures, Ph. D. Thesis, University of California, San Diego (2013)

[29] E. Morteau-Rivet; V. Faivre Damage tolerant composite fuselage sizing, characterization of accidental damage threat, Airbus Tech. Mag. FAST, Volume 48 (2011), pp. 10-16

Cited by Sources:

Comments - Policy