Comptes Rendus
A multi-phase linear kinematic elastoplastic model for the HAZ of welded S355J2 steel under low-cycle fatigue
Comptes Rendus. Mécanique, Volume 348 (2020) no. 3, pp. 175-190.

The aim of this paper is to develop a linear kinematic elastoplastic model for simulating the mechanical behavior of a heat-affected zone under low-cycle fatigue for welded S355J2 low-carbon steel. First, an experimental procedure is developed by means of a Gleeble machine for creating macroscopic tensile specimens with different homogeneous metallurgical compositions according to a welding continuous cooling transformation diagram. Then, cyclic tensile tests are carried out by prescribing different strain amplitudes up to 1%. By considering the stabilized behavior at mid-life, the yield stress and hardening modulus are identified as functions of the metallurgical composition by means of a linear mixture rule. Comparisons with numerical simulations are presented to show the efficiency of the multi-phase cyclic linear kinematic elastoplastic model proposed in this work.

Published online:
DOI: 10.5802/crmeca.38
Keywords: Gleeble, Weld, HAZ, Low-cycle fatigue, Kinematic hardening

Landry Giraud 1, 2; Cédric Pouvreau 3; François Josse 2; William Berckmans 3; Fabien Lefebvre 4; Christophe Carrillo 5; Eric Feulvarch 2

1 TRA-C industrie, ZAC les Olmes, 69490 Vindry-sur-Turdine, France
2 Univ Lyon, ENISE, LTDS UMR 5513 CNRS, 58 rue Jean Parot, 42023 Saint-Etienne cedex 02, France
3 Univ Bretagne Sud, IRDL UMR 6612 CNRS, Centre de Recherche, Rue de St Maude, 56100 Lorient, France
4 CETIM, 52 Avenue Felix Louat, 60300 Senlis, France
5 Haulotte Group, 27 rue d’Onzion, 42152 L’Horme, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Landry Giraud and C\'edric Pouvreau and Fran\c{c}ois Josse and William Berckmans and Fabien Lefebvre and Christophe Carrillo and Eric Feulvarch},
     title = {A multi-phase linear kinematic elastoplastic model for the {HAZ} of welded {S355J2} steel under low-cycle fatigue},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {175--190},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {3},
     year = {2020},
     doi = {10.5802/crmeca.38},
     language = {en},
AU  - Landry Giraud
AU  - Cédric Pouvreau
AU  - François Josse
AU  - William Berckmans
AU  - Fabien Lefebvre
AU  - Christophe Carrillo
AU  - Eric Feulvarch
TI  - A multi-phase linear kinematic elastoplastic model for the HAZ of welded S355J2 steel under low-cycle fatigue
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 175
EP  - 190
VL  - 348
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.38
LA  - en
ID  - CRMECA_2020__348_3_175_0
ER  - 
%0 Journal Article
%A Landry Giraud
%A Cédric Pouvreau
%A François Josse
%A William Berckmans
%A Fabien Lefebvre
%A Christophe Carrillo
%A Eric Feulvarch
%T A multi-phase linear kinematic elastoplastic model for the HAZ of welded S355J2 steel under low-cycle fatigue
%J Comptes Rendus. Mécanique
%D 2020
%P 175-190
%V 348
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmeca.38
%G en
%F CRMECA_2020__348_3_175_0
Landry Giraud; Cédric Pouvreau; François Josse; William Berckmans; Fabien Lefebvre; Christophe Carrillo; Eric Feulvarch. A multi-phase linear kinematic elastoplastic model for the HAZ of welded S355J2 steel under low-cycle fatigue. Comptes Rendus. Mécanique, Volume 348 (2020) no. 3, pp. 175-190. doi : 10.5802/crmeca.38.

[1] A. Benoit; L. Remy; A. Koster; H. Maitournam; F. Roger Experimental investigation of the behavior and the low cycle fatigue life of a welded structure, Mater. Sci. Eng. A, Volume 595 (2014), pp. 64-76

[2] P. Rettenmeier; E. Roos; S. Weihe Fatigue analysis of multiaxially loaded crane runway structures including welding residual stress effects, Int. J. Fatigue, Volume 82 (2016), pp. 179-187 | DOI

[3] R. Baptista; T. Santos; J. Marques; M. Guedes; V. Infante Fatigue behavior and microstructural characterization of a high strength steel for welded railway rails, Int. J. Fatigue, Volume 117 (2018), pp. 1-8 | DOI

[4] E. Feulvarch; V. Robin; J. M. Bergheau Thermometallurgical and mechanical modelling of welding - application to multipass dissimilar metal girth welds, Sci. Technol. Weld. Joining, Volume 16 (2011), pp. 221-231 | DOI

[5] G. Eggeler; A. Ramteke; M. Coleman; B. Chew; G. Peter; A. Burblies; J. Hald; C. Jefferey; J. Rantala; M. deWitte Analysis of creep in a welded P91 pressure vessel, Int. J. Press. Vessels Pip., Volume 60 (1994), pp. 237-257 | DOI

[6] A. H. D. Sorkhabi; F. Vakili-Tahami Experimental study of the creep behavior of parent, simulated HAZ and weld materials for cold-drawn 304l stainless steel, Eng. Failure Anal., Volume 21 (2012), pp. 78-90 | DOI

[7] S. Kim; D. Kang; T.-W. Kim; J. Lee; C. Lee Fatigue crack growth behavior of the simulated HAZ of 800mpa grade high-performance steel, Mater. Sci. Eng. A, Volume 528 (2011), pp. 2331-2338 | DOI

[8] X. Wang; Z. Wang; X. Ma; S. Subramanian; Z. Xie; C. Shang; X. Li Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure, Mater. Charact., Volume 140 (2018), pp. 312-319 | DOI

[9] J. Hu; L.-X. Du; J.-J. Wang; C.-R. Gao Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel, Mater. Sci. Eng. A, Volume 577 (2013), pp. 161-168 | DOI

[10] L. Shao; S. Wu; S. Zhao; J. Ketkaew; H. Zhao; F. Ye; J. Schroers Evolution of microstructure and microhardness of the weld simulated heat-affected zone of Ti–22Al–25Nb (at.%) alloy with continuous cooling rate, J. Alloys Compd., Volume 744 (2018), pp. 487-492 | DOI

[11] W. Liu; F. Lu; R. Yang; X. Tang; H. Cui Gleeble simulation of the HAZ in Inconel 617 welding, J. Mater. Process. Technol., Volume 225 (2015), pp. 221-228 | DOI

[12] P. Seyffarth; B. Meyer; A. Scharff Großer Atlas Schweiß-ZTU-Schaubilder, Deutscher Verlag für Schweißtechnik DVS-Verlag GmbH, 1992

[13] Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count (2001) no. ASTM E562-01 | DOI

[14] W. Prager Recent developments in the mathematical theory of plasticity, J. Appl. Phys., Volume 20 (1949), pp. 235-241 | DOI | MR | Zbl

[15] L. Chaboche Time independent constitutives theories for cyclic plasticity, Int. J. Plast., Volume 2 (1986), pp. 149-188 | DOI | Zbl

[16] P. J. Armstrong; C. O. Frederick A mathematical representation of the multiaxial Bauschinger effect, Berkeley Nuclear Laboratories, 1966, Mat. High Temp., Volume 24 (2007), pp. 11-26 (Reprinted)

[17] J. B. Esnault; V. Doquet; P. Massin A three-dimensional analysis of fatigue crack paths in thin metallic sheets, Int. J. Fatigue, Volume 62 (2014), pp. 119-132 | DOI

[18] A. H. Mahmoudi; H. Badnava; S. M. Pezeshki-Najafabadi An application of Chaboche model to predict uniaxial and multiaxial ratcheting, Procedia Eng., Volume 10 (2011), pp. 1924-1929 | DOI

[19] N. Ohno; D. Wang Kinematic hardening rules with critical state of dynamic recovery, Part I: formulation and basic features for ratchetting behavior, Int. J. Plast., Volume 9 (1993), pp. 375-390 | DOI

[20] X. Chen; R. Jiao; K. S. Kim On the Ohno Wang kinematic hardening rules of multiaxial, Int. J. Plast. (2005), pp. 161-184 | DOI | Zbl

[21] J. B. Leblond; J. Devaux; J. C. Devaux Mathematical modelling of transformation plasticity in steels, I: case of ideal-plastic phases, II: coupling with strain hardening phenomena, Int. J. Plast., Volume 5 (1989), pp. 551-591 | DOI

Cited by Sources:

Comments - Policy