Modal analysis techniques are considered as the most used of techniques allowing the characterization of the dynamic behaviour in systems such as planetary gear transmission. During operational conditions, the modal behaviour can be altered. The main purpose of this paper is to estimate the Modal Properties (MP) of two-stage planetary gear during non-stationary regimes using a further version of Operational Modal Analysis (OMA). The natural frequencies and modal damping are determined by Order Tracking (OT) and processed using diagram stability tool. Moreover, the modelling and the treatment of the non-stationary regimes were established. The proposed technique proves that order-based OMA can extract resonances which are related to the interaction between structural modes and the rotational speed harmonics. The experimental measurements are compared to the obtained results via a numerical model. It proves that the natural frequencies and modal damping are significantly dependent on the load.

Revised:

Accepted:

Published online:

Ayoub Mbarek ^{1, 2};
Alfonso Fernández ^{1};
Ahmed Hammami ^{2};
Fakher Chaari ^{2};
Fernando Viadero ^{1};
Mohamed Haddar ^{2}

@article{CRMECA_2022__350_G2_391_0, author = {Ayoub Mbarek and Alfonso Fern\'andez and Ahmed Hammami and Fakher Chaari and Fernando Viadero and Mohamed Haddar}, title = {Operational modal analysis using order-based analysis in a two-stage planetary gear with mechanical power recirculation}, journal = {Comptes Rendus. M\'ecanique}, pages = {391--411}, publisher = {Acad\'emie des sciences, Paris}, volume = {350}, year = {2022}, doi = {10.5802/crmeca.123}, language = {en}, }

TY - JOUR AU - Ayoub Mbarek AU - Alfonso Fernández AU - Ahmed Hammami AU - Fakher Chaari AU - Fernando Viadero AU - Mohamed Haddar TI - Operational modal analysis using order-based analysis in a two-stage planetary gear with mechanical power recirculation JO - Comptes Rendus. Mécanique PY - 2022 SP - 391 EP - 411 VL - 350 PB - Académie des sciences, Paris DO - 10.5802/crmeca.123 LA - en ID - CRMECA_2022__350_G2_391_0 ER -

%0 Journal Article %A Ayoub Mbarek %A Alfonso Fernández %A Ahmed Hammami %A Fakher Chaari %A Fernando Viadero %A Mohamed Haddar %T Operational modal analysis using order-based analysis in a two-stage planetary gear with mechanical power recirculation %J Comptes Rendus. Mécanique %D 2022 %P 391-411 %V 350 %I Académie des sciences, Paris %R 10.5802/crmeca.123 %G en %F CRMECA_2022__350_G2_391_0

Ayoub Mbarek; Alfonso Fernández; Ahmed Hammami; Fakher Chaari; Fernando Viadero; Mohamed Haddar. Operational modal analysis using order-based analysis in a two-stage planetary gear with mechanical power recirculation. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 391-411. doi : 10.5802/crmeca.123. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.123/

[1] Investigation on the RLS and Kalman based adaptive order tracking techniques for rotating machinery analysis, Chem. Eng. Trans., Volume 33 (2013), pp. 25-30

[2] Modal analysis of back-to-back planetary gear: experiments and correlation against lumped-parameter model, J. Theor. Appl. Mech., Volume 53 (2015), pp. 125-138 | DOI

[3] Planetary gear modal vibration experiments and correlation against lumped-parameter and finite element models, J. Sound Vib., Volume 332 (2013) no. 9, pp. 2350-2375 | DOI

[4] Comparison of experimental and operational modal analysis on a back-to-back planetary gear, Mech. Mach. Theory, Volume 124 (2018), pp. 226-247 | DOI

[5] Modal analysis and testing of rotating structures, Phil. Trans. R. Soc. Lond. A, Volume 359 (2001), pp. 61-96 | DOI | Zbl

[6] The extended Kalman filter in the frequency domain for the identification of mechanical structures excited by sinusoidal multiple inputs, Mech. Syst. Signal Process, Volume 14 (2000) no. 3, pp. 327-341 | DOI

[7] A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation, J. Sound Vib., Volume 275 (2004), pp. 375-390 | DOI

[8] Modified SSTD method to account for harmonic excitations during operational modal analysis, Mech. Mach. Theory, Volume 39 (2004), pp. 1247-1255 | DOI | Zbl

[9] Operational modal analysis in the presence of harmonic excitation, J. Sound Vib., Volume 270 (2004), pp. 93-109 | DOI

[10] Modified ERA method for operational modal analysis in the presence of harmonic excitations, Mech. Syst. Signal Process, Volume 20 (2006), pp. 114-130 | DOI

[11] Experimental identification of closely spaced modes using NExT-ERA, J. Sound Vib., Volume 412 (2018), pp. 116-129 | DOI

[12] Harmonic elimination algorithm for operational modal analysis using random decrement technique, Mech. Syst. Signal Process, Volume 24 (2010), pp. 922-944 | DOI

[13] Separation of structural modes and harmonic frequencies in operational modal analysis using random decrement, Mech. Syst. Signal Process, Volume 41 (2013), pp. 366-379 | DOI

[14] The PolyMAX frequency-domain method: a new standard for modal parameter estimation, Shock Vib., Volume 11 (2004) no. 3-4, pp. 395-409 | DOI

[15] Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ, 1986

[16] High resolution order tracking using Kalman tracking filters – theory and applications, Proceedings of Noise and Vibration Conference (1995) (SAE Technical Paper 951332)

[17] Characteristics of the Vold/Kalman order tracking filter, Proceedings of 17th Annual International Modal Analysis Conference (1999)

[18] Vold–Kalman order tracking: new methods for vehicle sound quality and drivetrain NVH applications, Proceedings of G50 Noise and Vibration Conference (1997) (SAE Technical Paper 972033)

[19] An order-tracking technique for the diagnosis of faults in rotating machineries using a variable step-size affine projection algorithm, NDT&E Int., Volume 38 (2005), pp. 119-127

[20] et al. A modal parameter identification method of machine tools based on particle swarm optimization, Proc. Inst. Mech. Eng., Part C, Volume 233 (2019) no. 17, pp. 6112-6123 | DOI

[21] Experimental measurement of the effects of torque on the dynamic behavior and system parameters of planetary gears, Mech. Mach. Theory, Volume 74 (2014), pp. 370-389 | DOI

[22] Effect of load and meshing stiffness variation on modal properties of planetary gear, Appl. Acoust., Volume 147 (2019), pp. 32-43 | DOI

[23] Effects of variable loading conditions on the dynamic behavior of planetary gear withpower recirculation, Measurement, Volume 94 (2016), pp. 306-315 | DOI

[24] Order-Based Modal Analysis: a modal parameter estimation technique for rotating machineries, 6th International Operational Modal Analysis Conference Proceedings (2015), pp. 325-332

[25] Dynamic characterization of wind turbine gearboxes using Order-Based Modal Analysis, Proceedings of International Conference on Noise and Vibration Engineering (ISMA2014) and International Conference on Uncertainty in Structural Dynamics (USD2014) (2014), pp. 4349-4362

[26] Méthode des Éléments Finis – Une Présentation, Hermès Science Publications, Paris, France, 2005

[27] Fault diagnosis in speed variation conditions via improved tacholess order tracking technique, Measurement, Volume 137 (2019), pp. 604-616 | DOI

[28] Effect of gravity of carrier on the dynamic behavior of planetary gears, International Conference Design and Modelling of Mechanical Systems (2017), pp. 975-983

[29] A model for the study of meshing stiffness in spur gear transmissions, Mech. Mach. Theory, Volume 61 (2013), pp. 30-58 | DOI

[30] Non-stationary dynamic analysis of a wind turbine power drivetrain: Offshore considerations, Appl. Acoust., Volume 77 (2014), pp. 204-211 | DOI

[31] Parametric Instabilities in Planetary Gears under Mesh Stiffness Variations, J. Vib. Acoust., Volume 249 (2000) no. 1, pp. 129-146

[32] The effect of start-up load conditions on gearbox performance and life failure analysis, with supporting case study, American Gear Manufacturers Association Fall Technical Meeting (2009)

[33] Dynamic behavior of the nonlinear planetary gear model in nonstationary conditions, Proc. Inst. Mech. Eng. Part C, Volume 235 (2021) no. 20, pp. 4648-4662 | DOI

[34] Vibration fault features of planetary gear train with cracks under time-varying flexible transfer functions, Mech. Mach. Theory, Volume 158 (2021), 104237 | DOI

[35] Gear rattle dynamics under non-stationary conditions: The lubricant role, Mech. Mach. Theory, Volume 151 (2020), 103929 | DOI

[36] Modal properties of a two-stage planetary gear system with sliding friction and elastic continuum ring gear, Mech. Mach. Theory, Volume 135 (2019), pp. 251-270 | DOI

[37] Modal properties and parametrically excited vibrations of spinning epicyclic/planetary gears with a deformable ring, J. Sound Vib., Volume 494 (2021), 115828 | DOI

[38] Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears, Department of Mechanical Engineering, Ohio State University, Columbus, 2001

*Cited by Sources: *

Comments - Policy