Comptes Rendus
The effect of confinement on thermal convection and longitudinal macrosegregation in directionally solidified dilute succinonitrile–camphor alloy
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 249-262.

Directional solidification experiments were conducted in a succinonitrile–0.24 wt% camphor alloy with an emphasis on the planar front interface temperature dynamics using different sample thicknesses. The interface temperature was found to depend significantly on the thickness due to non-negligible convection effects in the thicker samples. The results were interpreted with the help of an order of magnitude analysis and a boundary layer model, which permitted estimation of the solute macrosegregation profile. The experiments and corresponding analyses performed in this work constitute an experimental characterization of convection effects as a function of sample thickness.

Des expériences de solidification dirigée ont été menées dans un alliage succinonitrile–0,24% en poids de camphre en se concentrant sur la dynamique de la température de l’interface du front plan en utilisant différentes épaisseurs d’échantillons. La température d’interface s’est avérée dépendre de manière significative de l’épaisseur en raison d’effets de convection non négligeables dans les échantillons plus épais. Les résultats ont été interprétés à l’aide d’une analyse d’ordre de grandeur et d’un modèle de couche limite, qui ont permis d’estimer le profil de macroségrégation du soluté. Les expériences et les analyses correspondantes réalisées dans ce travail constituent une caractérisation expérimentale des effets de convection en fonction de l’épaisseur de l’échantillon.

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.140
Keywords: Directional solidification, Planar interface dynamics, Convection, Succinonitrile–camphor binary system, Solute boundary layer
Mot clés : Solidification dirigée, Dynamique des interfaces planes, Convection, Système binaire succinonitrile–camphre, Couche limite solutate

Fatima L. Mota 1, 2; Luis M. Fabietti 2, 3, 4; Nathalie Bergeon 1; Rohit Trivedi 2

1 Aix Marseille Univ, Université de Toulon, CNRS, IM2NP, Marseille, France
2 Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50010, USA
3 Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Ciudad Universitaria, 5000 Córdoba, Argentina
4 Instituto de Física Enrique Gaviola, CONICET, Córdoba, Argentina
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S2_249_0,
     author = {Fatima L. Mota and Luis M. Fabietti and Nathalie Bergeon and Rohit Trivedi},
     title = {The effect of confinement on thermal convection and longitudinal macrosegregation in directionally solidified dilute succinonitrile{\textendash}camphor alloy},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {249--262},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.140},
     language = {en},
}
TY  - JOUR
AU  - Fatima L. Mota
AU  - Luis M. Fabietti
AU  - Nathalie Bergeon
AU  - Rohit Trivedi
TI  - The effect of confinement on thermal convection and longitudinal macrosegregation in directionally solidified dilute succinonitrile–camphor alloy
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 249
EP  - 262
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.140
LA  - en
ID  - CRMECA_2023__351_S2_249_0
ER  - 
%0 Journal Article
%A Fatima L. Mota
%A Luis M. Fabietti
%A Nathalie Bergeon
%A Rohit Trivedi
%T The effect of confinement on thermal convection and longitudinal macrosegregation in directionally solidified dilute succinonitrile–camphor alloy
%J Comptes Rendus. Mécanique
%D 2023
%P 249-262
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.140
%G en
%F CRMECA_2023__351_S2_249_0
Fatima L. Mota; Luis M. Fabietti; Nathalie Bergeon; Rohit Trivedi. The effect of confinement on thermal convection and longitudinal macrosegregation in directionally solidified dilute succinonitrile–camphor alloy. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 249-262. doi : 10.5802/crmeca.140. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.140/

[1] J. Li; M. H. Wu; A. Ludwig; A. Kharicha Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model, Int. J. Heat Mass Transfer, Volume 72 (2014), pp. 668-679 | DOI

[2] E. J. Pickering; C. Chesman; S. Al-Bermani; M. Holland; P. Davies; J. Talamantes-Silva A comprehensive case study of macrosegregation in a steel ingot, Metall. Mater. Trans. B, Volume 46 (2015), pp. 1860-1874 | DOI

[3] K. V. S. Rao Experimental studies on microstructure evolution and macro segregation during upward directional solidification of lead–tin alloys, Proc. Mater. Sci., Volume 5 (2014), pp. 1224-1230 | DOI

[4] M. Chatelain; M. Albaric; D. Pelletier; V. Botton Solute segregation in directional solidification: Scaling analysis of the solute boundary layer coupled with transient hydrodynamic simulations, J. Cryst. Growth, Volume 430 (2015), pp. 138-147 | DOI

[5] M. E. Glicksman; S. R. Coriell; G. B. Mcfadden Interaction of flows with the crystal–melt interface, Annu. Rev. Fluid Mech., Volume 18 (1986), pp. 307-335 | DOI

[6] S. H. Davis Hydrodynamic interactions in directional solidification, J. Fluid Mech., Volume 212 (1990), pp. 241-262 | DOI | MR

[7] M. D. Dupouy; D. Camel; J. J. Favier Natural-convection in directional dendritic solidification of metallic alloys. 1. Macroscopic effects, Acta Metall., Volume 37 (1989), pp. 1143-1157 | DOI

[8] H. Nguyen-Thi; G. Reinhart; B. Billia On the interest of microgravity experimentation for studying convective effects during the directional solidification of metal alloys, C. R. Méc., Volume 345 (2017), pp. 66-77 | DOI

[9] W. Kurz; D. J. Fisher Fundamentals of Solidification, Trans Tech Publications, New Hampshire, USA, 1998

[10] M. Cross; H. Greenside Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, Cambridge, 2009 | DOI

[11] J. A. Dantzig; M. Rappaz Solidification, EPFL Press, Lausanne, 2009 | DOI

[12] S. Gurevich; A. Karma; M. Plapp; R. Trivedi Phase-field study of three-dimensional steady-state growth shapes in directional solidification, Phys. Rev. E, Volume 81 (2010), 011603 | DOI

[13] M. Serefoglu; R. E. Napolitano On the selection of rod-type eutectic morphologies: Geometrical constraint and array orientation, Acta Mater., Volume 56 (2008), pp. 3862-3873 | DOI

[14] V. T. Witusiewicz; U. Hecht; S. Rex Fibrous eutectic growth in succinonitrile–neopentylglycol–(D)camphor–aminomethylpropanediol alloys for thin and bulk sample geometry, Acta Mater., Volume 65 (2014), pp. 360-372 | DOI

[15] M. Serefoglu; R. E. Napolitano; M. Plapp Phase-field investigation of rod eutectic morphologies under geometrical confinement, Phys. Rev. E, Volume 84 (2011), 011614 | DOI

[16] B. P. Athreya; J. A. Dantzig; S. Liu; R. Trivedi On the role of confinement on solidification in pure materials and binary alloys, Philos. Mag., Volume 86 (2006), pp. 3739-3756 | DOI

[17] N. F. Dean; A. Mortensen; M. C. Flemings Steady-state cellular solidification of Al–Cu reinforced with alumina fibers, Metall. Mater. Trans. A, Volume 26 (1995), pp. 2141-2153 | DOI

[18] L. M. Fabietti; J. A. Sekhar Planar to equiaxed transition in the presence of an external wetting surface, Metall. Mater. Trans. A, Volume 23 (1992), pp. 3361-3368 | DOI

[19] L. M. Fabietti; J. A. Sekhar Quantitative microstructure maps for restrained directional growth, J. Mater. Sci., Volume 29 (1994), pp. 473-477 | DOI

[20] J. D. Hunt; S. Z. Lu Numerical modeling of cellular and dendritic array growth – spacing and structure predictions, Mater. Sci. Eng. A, Volume 173 (1993), pp. 79-83 | DOI

[21] J. H. Jeong; N. Goldenfeld; J. A. Dantzig Phase field model for three-dimensional dendritic growth with fluid flow, Phys. Rev. E, Volume 64 (2001), 041602 | DOI

[22] L. X. Liu; J. S. Kirkaldy Systematics of thin-film cellular dendrites and the cell-to-dendrite transition in succinonitrile salol, succinonitrile acetone and pivalic acid ethanol, J. Cryst. Growth, Volume 140 (1994), pp. 115-122 | DOI

[23] S. Z. Lu; J. D. Hunt A numerical-analysis of dendritic and cellular array growth – the spacing adjustment mechanisms, J. Cryst. Growth, Volume 123 (1992), pp. 17-34 | DOI

[24] M. Plapp; M. Dejmek Stability of hexagonal solidification patterns, Europhys. Lett., Volume 65 (2004), pp. 276-282 | DOI

[25] J. A. Sekhar; R. Trivedi Development of solidification microstructures in the presence of fibers or channels of finite width, Mater. Sci. Eng. A, Volume 114 (1989), pp. 133-146 | DOI

[26] A. Semoroz; S. Henry; M. Rappaz Application of the phase-field method to the solidification of hot-dipped galvanized coatings, Metall. Mater. Trans. A, Volume 31 (2000), pp. 487-495 | DOI

[27] D. Shangguan; J. D. Hunt In situ observation of nonfaceted cellular growth in a narrow channel, Metall. Trans. A, Volume 22 (1991), pp. 1683-1687 | DOI

[28] R. Trivedi; H. Miyahara; P. Mazumder; E. Simsek; S. N. Tewari Directional solidification microstructures in diffusive and convective regimes, J. Cryst. Growth, Volume 222 (2001), pp. 365-379 | DOI

[29] M. A. Eshelman; V. Seetharaman; R. Trivedi Cellular spacings—I. Steady-state growth, Acta Metall., Volume 36 (1988), pp. 1165-1174 | DOI

[30] S. H. Han; R. Trivedi Primary spacing selection in directionally solidified alloys, Acta Metall. Mater., Volume 42 (1994), pp. 25-41 | DOI

[31] J. S. Kirkaldy Spontaneous evolution of microstructure in materials, Metall. Trans. A, Volume 24 (1993), pp. 1689-1721 | DOI

[32] L. X. Liu; J. S. Kirkaldy Relationship between free and forced velocity or cellular dendrites, Scr. Metall. Mater., Volume 29 (1993), pp. 801-806 | DOI

[33] L. X. Liu; J. S. Kirkaldy Systematics of pattern parameters in steady-state solidification of succinonitrile-salol, succinonitrile-acetone and pivalic acid-ethanol, Scr. Metall. Mater., Volume 28 (1993), pp. 1029-1034 | DOI

[34] L. X. Liu; J. S. Kirkaldy Thin-film forced velocity cells and cellular dendrites. 1. Experiments, Acta Metall. Mater., Volume 43 (1995), pp. 2891-2904 | DOI

[35] K. Somboonsuk; J. T. Mason; R. Trivedi Interdendritic spacing. 1. Experimental studies, Metall. Trans. A, Volume 15 (1984), pp. 967-975 | DOI

[36] P. Kurowski; C. Guthmann; S. Decheveigne Shapes, wavelength selection, and the cellular-dendritic transition in directional solidification, Phys. Rev. A, Volume 42 (1990), pp. 7368-7376 | DOI

[37] B. Billia; H. Jamgotchian; H. N. Thi Influence of sample thickness on cellular branches and cell-dendrite transition in directional solidification of binary alloys, J. Cryst. Growth, Volume 167 (1996), pp. 265-276 | DOI

[38] S. Liu; M. Suk; L. Fabietti; R. Trivedi The effect of dimensionality on microstructures in directionally solidified SCN-Salol alloys, Solidification Processes and Microstructures: A Symposium in Honor of Wilfried Kurz (M. Rappaz; C. Beckermann; R. Trivedi, eds.), Minerals, Metals & Materials Soc., Pittsburgh, PA, 2004, pp. 211-218

[39] J. Chen; P. K. Sung; S. N. Tewari; D. R. Poirier; H. C. de Groh Directional solidification and convection in small diameter crucibles, Mater. Sci. Eng., Volume 357 (2003), pp. 397-405 | DOI

[40] J. Chen; S. N. Tewari; G. Magadi; H. C. de Groh Effect of crucible diameter reduction on the convection, macrosegregation, and dendritic morphology during directional solidification of Pb-2.2 wt pct Sb alloy, Metall. Trans. A, Volume 34 (2003), pp. 2985-2990 | DOI

[41] J. A. Burton; R. C. Prim; W. P. Slichter The distribution of solute in crystals grown from the melt. Part I. Theoretical, J. Chem. Phys., Volume 21 (1953), pp. 1987-1991 | DOI

[42] J. J. Favier Macrosegregation. 2. A comparative-study of theories, Acta Metall., Volume 29 (1981), pp. 205-214 | DOI

[43] A. Karma; W. J. Rappel; B. C. Fuh; R. Trivedi Model of banding in diffusive and convective regimes during directional solidification of peritectic systems, Metall. Mater. Trans. A, Volume 29 (1998), pp. 1457-1470 | DOI

[44] J. A. Warren; J. S. Langer Prediction of dendritic spacings in a directional-solidification experiment, Phys. Rev. E, Volume 47 (1993), pp. 2702-2712 | DOI

[45] D. Camel; J. J. Favier Thermal-convection and longitudinal macrosegregation in horizontal bridgman crystal-growth. 1. Order of magnitude analysis, J. Cryst. Growth, Volume 67 (1984), pp. 42-56 | DOI

[46] D. Camel; J. J. Favier Thermal-convection and longitudinal macrosegregation in horizontal bridgman crystal-growth. 2. Practical laws, J. Cryst. Growth, Volume 67 (1984), pp. 57-67 | DOI

[47] J. J. Favier Recent advances in bridgman growth modeling and fluid-flow, J. Cryst. Growth, Volume 99 (1990), pp. 18-29 | DOI

[48] L. Strutzenberg Plane front dynamics and pattern formation in diffusion controlled directional solidification of alloys, Ph. D. Thesis, Iowa State University (2004)

[49] T. Taenaka; H. Esaka; S. Mizoguchi; H. Kajioka Equilibrium phase diagram of succinonitrile-camphor system, J. Japan Inst. Metals Mater., Volume 52 (1988), pp. 491-494 | DOI

[50] M. A. Chopra; M. E. Glicksman; N. B. Singh Dendritic solidification in binary-alloys, Metall. Trans. A, Volume 19 (1988), pp. 3087-3096 | DOI

[51] F. L. Mota; L. M. Fabietti; N. Bergeon; L. L. Strutzenberg; A. Karma; B. Billia; R. Trivedi Quantitative determination of the solidus line in the dilute limit of succinonitrile-camphor alloys, J. Cryst. Growth, Volume 447 (2016), pp. 31-35 | DOI

[52] W. W. Mullins; R. F. Sekerka Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys., Volume 35 (1964), pp. 444-451 | DOI

[53] J. C. LaCombe; J. L. Oudemool; M. B. Koss; L. T. Bushnell; M. E. Glicksman Measurement of thermal expansion in liquid succinonitrile and pivalic acid, J. Cryst. Growth, Volume 173 (1997), pp. 167-171 | DOI

[54] M. Schraml; F. Sommer; B. Pur; W. Kohler; G. Zimmermann; V. T. Witusiewicz; L. Sturz Measurement of non-isothermal transport coefficients in a near-eutectic succinonitrile/(d)camphor mixture, J. Chem. Phys., Volume 150 (2019), 204508 | DOI

[55] Q. Li; C. Beckermann Modeling of free dendritic growth of succinonitrile-acetone alloys with thermosolutal melt convection, J. Cryst. Growth, Volume 236 (2002), pp. 482-498 | DOI

[56] J. Teng; S. Liu Re-determination of succinonitrile (SCN)-camphor phase diagram, J. Cryst. Growth, Volume 290 (2006), pp. 248-257 | DOI

[57] S. Decheveigne; C. Guthmann; M. M. Lebrun Cellular instabilities in directional solidification, J. Phys., Volume 47 (1986), pp. 2095-2103 | DOI

[58] L. M. Fabietti; V. Seetharaman; R. Trivedi The development of solidification microstructures in the presence of lateral constraints, Metall. Trans. A, Volume 21 (1990), pp. 1299-1310 | DOI

[59] J. W. Rutter; B. Chalmers A prismatic substructure formed during solidification of metals, Can. J. Phys., Volume 31 (1953), pp. 15-39 | DOI

[60] W. A. Tiller; K. A. Jackson; J. W. Rutter; B. Chalmers The redistribution of solute atoms during the solidification of metals, Acta Metall., Volume 1 (1953), pp. 428-437 | DOI

[61] D. Camel; J. J. Favier Theoretical-analysis of solute transport regimes during crystal-growth from the melt in an ideal czochralski configuration, J. Cryst. Growth, Volume 61 (1983), pp. 125-137 | DOI

[62] J. P. Garandet; T. Alboussiere Bridgman growth: modelling and experiments, Prog. Cryst. Growth Character. Mater., Volume 38 (1999), pp. 73-132 | DOI

Cited by Sources:

Comments - Policy