Comptes Rendus
Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications
[Croissance équiaxe de dendrites Al–Cu en interaction dans des échantillons minces : une étude de champ de phase à des concentrations de cuivre pertinentes pour des applications pratiques]
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 233-247.

Nous réalisons des simulations de type champ de phase tri-dimensionnel de la solidification equiaxe dans les échantillons minces d’Al–Cu. Des conditions purement diffusives sont considérées pour décrire des systèmes où la convection et la gravité peuvent être négligées. L’utilisation d’un algorithme parallèle adaptatif de type éléments finis proposé récemment [Gong et al., Comput. Mater. Sci. 147 (2018) p. 338-352] nous permet d’atteindre le domaine des concentrations en cuivre utisées dans les applications pratiques (c3 wt% Cu). Nous comparons nos résultats à ceux d’une étude antérieure qui, en raison de l’utilisation d’un code de différences finies, était restreinte à des concentrations de cuivre plus faibles (c2 wt% Cu) [Boukellal et al., Materialia 1 (2018) p. 62-69]. Dans le régime de croissance dendritique rapide, nos résultats confirment que la longueur de croissance adimensionnée Λ est indépendante de la concentration du cuivre et de la distance moyenne séparant les germes dendritiques. Les nouveaux résultats obtenus aux concentrations plus élevées conduisent à une estimation plus précise de Λ. Des arguments physiques sont développés pour préciser la signification de Λ et les fondements de la loi d’échelle Λ=cst. La comparaison avec les résultats expérimentaux disponibles dans la litérature scientifique apporte une confirmation supplémentaire de cette loi d’échelle.

We perform three-dimensional phase-field simulations of equiaxed solidification in Al–Cu thin samples. Purely diffusive conditions are considered in order to describe systems where convection and gravity effects can be neglected. The use of a parallel adaptive finite element algorithm introduced recently [Gong et al., Comput. Mater. Sci. 147 (2018) p. 338-352] allows us to reach the domain of copper concentrations used in practical applications (c3 wt% Cu). We compare the present results with those of a previous study which was restricted to lower copper concentrations (c2 wt% Cu) [Boukellal et al., Materialia 1 (2018) p. 62-69] due to the use of a finite difference code. In the fast dendritic growth regime, our results confirm that the dimensionless growth length Λ is independent of the copper concentration and the average separation distance between the dendrite nuclei. The new data obtained at higher copper concentrations lead to a more accurate estimate of Λ. Physical arguments are developed to specify the meaning of Λ and the grounds of the scaling law Λ=cst. Comparisons with available experimental results of the literature give additional support to this scaling law.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.145
Keywords: Metals and alloys, Solidification, Solute diffusion, Grain structure, Phase-field, Microgravity
Mot clés : Métaux et alliages, Solidification, Diffusion des solutés, Structure des grains, Champ de phase, Microgravité
Tong Zhao Gong 1 ; Ahmed Kaci Boukellal 2 ; Yun Chen 1 ; Jean-Marc Debierre 3

1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, P. R. China
2 IMDEA Materials Institute, Getafe, Madrid, Spain
3 Aix-Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_233_0,
     author = {Tong Zhao Gong and Ahmed Kaci Boukellal and Yun Chen and Jean-Marc Debierre},
     title = {Equiaxed growth of interacting {Al{\textendash}Cu} dendrites in thin samples: a~phase-field study at copper concentrations relevant for practical applications},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {233--247},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.145},
     language = {en},
}
TY  - JOUR
AU  - Tong Zhao Gong
AU  - Ahmed Kaci Boukellal
AU  - Yun Chen
AU  - Jean-Marc Debierre
TI  - Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 233
EP  - 247
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.145
LA  - en
ID  - CRMECA_2023__351_S2_233_0
ER  - 
%0 Journal Article
%A Tong Zhao Gong
%A Ahmed Kaci Boukellal
%A Yun Chen
%A Jean-Marc Debierre
%T Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications
%J Comptes Rendus. Mécanique
%D 2023
%P 233-247
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.145
%G en
%F CRMECA_2023__351_S2_233_0
Tong Zhao Gong; Ahmed Kaci Boukellal; Yun Chen; Jean-Marc Debierre. Equiaxed growth of interacting Al–Cu dendrites in thin samples: a phase-field study at copper concentrations relevant for practical applications. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 233-247. doi : 10.5802/crmeca.145. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.145/

[1] S. S. Miller; L. Zhuang; J. Bottema; A. J. Wittebrood; P. De Smet; A. Haszlar; A. Viregge Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A, Volume 280 (2000), pp. 37-49 | DOI

[2] J. G. Kaufman; E. L. Rooy Aluminum Alloy Castings: Properties, Processes and Applications, AMS International, Materials Park, OH, 2004 | DOI

[3] L. F. Mondolfo Aluminum Alloys: Structure and Properties, Butterwoths, London, 1976, pp. 693-758 | DOI

[4] A. K. Boukellal; J.-M. Debierre; G. Reinhart; H. Nguyen-Thi Scaling laws governing the growth and interaction of equiaxed Al–Cu dendrites: A study combining experiments with phase-field simulations, Materialia, Volume 1 (2018), pp. 62-69 | DOI

[5] P. Pelcé New Visions on Form and Growth: Fingered Growth, Dendrites, and Flames, Oxford University Press, New York, 2004

[6] T. Z. Gong; Y. Chen; Y. F. Cao; X. H. Kang; D. Z. Li Fast simulations of a large number of crystals growth in centimeter-scale during alloy solidification via nonlinearly preconditioned quantitative phase-field formula, Comput. Mater. Sci., Volume 147 (2018), pp. 338-352 | DOI

[7] A. Badillo; C. Beckermann Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification, Acta Mater., Volume 54 (2006), pp. 2015-2026 | DOI

[8] G. Boussinot; M. Apel Phase field and analytical study of mushy zone solidification in a static thermal gradient: From dendrites to planar front, Acta Mater., Volume 122 (2017), pp. 310-321 | DOI

[9] A. J. Clarke; D. Tourret; S. D. Imhoff; P. J. Gibbs; K. Fezzaa; A. Karma Microstructure selection in thin-sample directional solidification of an Al–Cu alloy: In situ X-ray imaging and phase-field simulations, Acta Mater., Volume 129 (2017), pp. 203-216 | DOI

[10] F. Li; W. Zhi-Ping; Z. Chang-Sheng; L. Yang Phase-field model of isothermal solidification with multiple grain growth, Chin. Phys. B, Volume 18 (2009), pp. 1985-1991 | DOI

[11] Y. Chen; D. Z. Li; B. Billia; H. Nguyen-Thi; X. B. Qi; N. M. Xiao Quantitative phase-field simulation of dendritic equiaxed growth and comparison with in situ observation on Al–4 wt.% Cu alloy by means of synchrotron X-ray radiography, ISIJ Int., Volume 54 (2014), pp. 445-451 | DOI

[12] A. Bogno; H. Nguyen-Thi; G. Reinhart; B. Billia; J. Baruchel Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography, Acta Mater., Volume 61 (2013), pp. 1303-1315 | DOI

[13] K. Glasner Nonlinear preconditioning for diffuse interfaces, J. Comput. Phys., Volume 174 (2001), pp. 695-711 | DOI | Zbl

[14] J.-M. Debierre; R. Guérin; K. Kassner Crystal growth in a channel: Pulsating fingers, merry-go-round patterns, and seesaw dynamics, Phys. Rev. E, Volume 88 (2013), 042407

[15] N. Bergeon; D. Tourret; L. Chen; J.-M. Debierre; R. Guérin; R. Ramirez; B. Billia; A. Karma; R. Trivedi Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification, Phys. Rev. Lett., Volume 110 (2013), 226102 | DOI

[16] J. Ghmadh; J.-M. Debierre; J. Deschamps; M. Georgelin; R. Guérin; A. Pocheau Directional solidification of inclined structures in thin samples, Acta Mater., Volume 74 (2014), pp. 255-267 | DOI

[17] A. K. Boukellal; A. K. Sidi Elvalli; J.-M. Debierre Equilibrium and growth facetted shapes in isothermal solidification of silicon: 3D phase-field simulations, J. Cryst. Growth, Volume 522 (2019), pp. 37-44 | DOI

[18] A. Karma Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett., Volume 87 (2001), 115701 | DOI

[19] B. Echebarria; R. Folch; A. Karma; M. Plapp Quantitative phase-field model of alloy solidification, Phys. Rev. E, Volume 70 (2004), 061604 | DOI

[20] A. Karma; W. J. Rappel Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, Volume 57 (1998), pp. 4323-4349 | DOI | Zbl

[21] J. J. Hoyt; M. Asta; A. Karma Method for computing the anisotropy of the solid-liquid interfacial free energy, Phys. Rev. Lett., Volume 86 (2001), pp. 5530-5533 | DOI

[25] R. Hultgren; P. R. Desai; D. T. Hawkins; M. Gleiser; K. K. Kelley Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, OH, 1973, pp. 151-153

[26] H. Okamoto Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2010

[27] A. K. Boukellal; M. Rouby; J.-M. Debierre Tip dynamics for equiaxed Al–Cu dendrites in thin samples: Phase-field study of thermodynamic effects, Comput. Mater. Sci., Volume 186 (2021), 110051 | DOI

[28] M. Becker; S. Klein; F. Kargl Free dendritic tip growth velocities measured in Al–Ge, Phys. Rev. Mater., Volume 2 (2018), 073405

[29] M. Becker; L. Sturz; D. Bräuer; F. Kargl A comparative in situ X-radiography and DNN model study of solidification characteristics of an equiaxed dendritic Al-Ge alloy sample, Acta Mater., Volume 201 (2020), pp. 286-302 | DOI

[30] H. Nguyen-Thi; A. Bogno; G. Reinhart; B. Billia; R. H. Mathiesen; G. Zimmermann; Y. Houltz; K. Löth; D. Voss; A. Verga; F. de Pascale Investigation of gravity effects on solidification of binary alloys with in situ X-ray radiography on earth and in microgravity environment, J. Phys. Conf. Ser., Volume 327 (2011), 012012 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting

Philippe Jarry; Michel Rappaz

C. R. Phys (2018)


On the interest of microgravity experimentation for studying convective effects during the directional solidification of metal alloys

Henri Nguyen-Thi; Guillaume Reinhart; Bernard Billia

C. R. Méca (2017)


Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys

Kader Zaïdat; Nathalie Mangelinck-Noël; René Moreau

C. R. Méca (2007)