Comptes Rendus
A serendipity fully discrete div-div complex on polygonal meshes
[Un complexe div-div discret avec sérendipité sur maillages polygonaux]
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 219-249.

Dans cet article, nous abordons la réduction des degrés de liberté de face pour le complexe de l’élasticité discrète. Plus précisément, en utilisant des techniques de sérendipité, nous développons une version réduite d’un complexe bidimensionnel qui apparaît dans la discretisation des traces du complexe de l’élasticité tridimensionnel. La clé de voûte de la construction est une nouvelle estimation des fonctions polynomiales à valeurs tensorielles symétriques en termes de leur valeur au bord. Nous prouvons de nouveaux résultats pour le complexe original et montrons que le complexe réduit a les mêmes propriétés homologiques et analytiques que celui-ci. Cet article contient également une annexe avec des preuves d’inégalités de type Poincaré–Korn pour les champs hybrides.

In this work we address the reduction of face degrees of freedom (DOFs) for discrete elasticity complexes. Specifically, using serendipity techniques, we develop a reduced version of a recently introduced two-dimensional complex arising from traces of the three-dimensional elasticity complex. The keystone of the reduction process is a new estimate of symmetric tensor-valued polynomial fields in terms of boundary values, completed with suitable projections of internal values for higher degrees. We prove an extensive set of new results for the original complex and show that the reduced complex has the same homological and analytical properties as the original one. This paper also contains an appendix with proofs of general Poincaré–Korn-type inequalities for hybrid fields.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.150
Classification : 74K20, 74S05, 65N30
Keywords: Discrete de Rham method, serendipity, compatible discretisations, mixed formulation, div-div complex, biharmonic equation, Kirchhoff–Love plates
Mot clés : Méthode de de Rham discrète, sérendipité, discrétisations compatibles, formulation mixte, complexe div-div, équation biharmonique, plaques de Kirchhoff–Love

Michele Botti 1 ; Daniele A. Di Pietro 2 ; Marwa Salah 2

1 MOX, Politecnico di Milano, Italy
2 IMAG, Univ Montpellier, CNRS, Montpellier, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S1_219_0,
     author = {Michele Botti and Daniele A. Di Pietro and Marwa Salah},
     title = {A serendipity fully discrete div-div complex on polygonal meshes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {219--249},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.150},
     language = {en},
}
TY  - JOUR
AU  - Michele Botti
AU  - Daniele A. Di Pietro
AU  - Marwa Salah
TI  - A serendipity fully discrete div-div complex on polygonal meshes
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 219
EP  - 249
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.150
LA  - en
ID  - CRMECA_2023__351_S1_219_0
ER  - 
%0 Journal Article
%A Michele Botti
%A Daniele A. Di Pietro
%A Marwa Salah
%T A serendipity fully discrete div-div complex on polygonal meshes
%J Comptes Rendus. Mécanique
%D 2023
%P 219-249
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.150
%G en
%F CRMECA_2023__351_S1_219_0
Michele Botti; Daniele A. Di Pietro; Marwa Salah. A serendipity fully discrete div-div complex on polygonal meshes. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 219-249. doi : 10.5802/crmeca.150. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.150/

[1] Douglas N. Arnold; Ragnar Winther Mixed finite elements for elasticity, Numer. Math., Volume 92 (2002) no. 3, pp. 401-419 | DOI | MR | Zbl

[2] Douglas N. Arnold; Gerard Awanou Rectangular mixed finite elements for elasticity, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 9, pp. 1417-1429 | DOI | MR | Zbl

[3] Douglas N. Arnold; Richard S. Falk; Ragnar Winther Differential complexes and stability of finite element methods. II. The elasticity complex, Compatible spatial discretizations (The IMA Volumes in Mathematics and its Applications), Volume 142, Springer, 2006, pp. 47-67 | DOI | MR | Zbl

[4] Douglas N. Arnold; Gerard Awanou; Ragnar Winther Finite elements for symmetric tensors in three dimensions, Math. Comput., Volume 77 (2008) no. 263, pp. 1229-1251 | DOI | MR | Zbl

[5] Long Chen; X. Huang Finite elements for divdiv-conforming symmetric tensors in three dimensions, Math. Comput. (2022) (Online first) | DOI | Zbl

[6] A. Sky; I. Muench; P. Neff On H 1 , H( curl ) and H( sym Curl ) finite elements for matrix-valued Curl problems (2022) (https://arxiv.org/abs/2202.08740) | DOI

[7] Snorre H. Christiansen; Kaibo Hu Finite Element Systems for Vector Bundles: Elasticity and Curvature, Found. Comput. Math. (2022) (Online first) | DOI | Zbl

[8] Snorre H. Christiansen; Andrew Gillette Constructions of some minimal finite element systems, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 3, pp. 833-850 | DOI | Numdam | MR | Zbl

[9] Long Chen; Jun Hu; Xuehai Huang Multigrid methods for Hellan–Herrmann–Johnson mixed method of Kirchhoff plate bending problems, J. Sci. Comput., Volume 76 (2018) no. 2, pp. 673-696 | DOI | MR | Zbl

[10] P. A. Raviart; J. M. Thomas A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method (I. Galligani; E. Magenes, eds.) (Lecture Notes in Mathematics), Volume 606, Springer, 1977 | DOI | MR | Zbl

[11] Daniele A. Di Pietro; Jérôme Droniou A fully discrete plates complex on polygonal meshes with application to the Kirchhoff–Love problem, Math. Comput., Volume 92 (2023) no. 339, pp. 51-77 | DOI | MR | Zbl

[12] Daniele A. Di Pietro; Jérôme Droniou; Francesca Rapetti Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra, Math. Models Methods Appl. Sci., Volume 30 (2020) no. 9, pp. 1809-1855 | DOI | MR | Zbl

[13] Daniele A. Di Pietro; Jérôme Droniou An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency, Found. Comput. Math., Volume 23 (2023), pp. 85-164 | DOI | Zbl

[14] Roland Glowinski; Tsorng-Whay Pan; Jacques Périaux A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., Volume 111 (1994) no. 3-4, pp. 283-303 | DOI | MR | Zbl

[15] V. Girault; Roland Glowinski Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Ind. Appl. Math., Volume 12 (1995) no. 3, pp. 487-514 | DOI | MR | Zbl

[16] Daniele A. Di Pietro; Jérôme Droniou Homological- and analytical-preserving serendipity framework for polytopal complexes, with application to the DDR method, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 1, pp. 191-225 | DOI | MR

[17] Lourenço Beirão da Veiga; F. Dassi; Daniele A. Di Pietro; Jérôme Droniou Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes, Comput. Methods Appl. Mech. Eng., Volume 397 (2022), 115061 | DOI | MR | Zbl

[18] Lourenço Beirão da Veiga; Franco Brezzi; Luisa Donatella Marini; Alessandro Russo Virtual element method for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 4, pp. 729-750 | DOI | MR | Zbl

[19] Lourenço Beirão da Veiga; Franco Brezzi; Luisa Donatella Marini; Alessandro Russo Serendipity face and edge VEM spaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 28 (2017) no. 1, pp. 143-180 | DOI | MR | Zbl

[20] Lourenço Beirão da Veiga; Franco Brezzi; F. Dassi; Luisa Donatella Marini; Alessandro Russo Serendipity virtual elements for general elliptic equations in three dimensions, Chin. Ann. Math., Ser. B, Volume 39 (2018) no. 2, pp. 315-334 | DOI | MR | Zbl

[21] Daniele A. Di Pietro; Jérôme Droniou The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications, Modeling, Simulation and Applications, 19, Springer, 2020 | DOI

[22] M. I. Comodi The Hellan–Herrmann–Johnson method: some new error estimates and postprocessing, Math. Comput., Volume 52 (1989) no. 185, pp. 17-29 | DOI | MR | Zbl

[23] Long Chen; Xuehai Huang Finite elements for divdiv-conforming symmetric tensors (2021) (https://arxiv.org/abs/2005.01271v3)

[24] Dirk Pauly; Walter Zulehner The divDiv-complex and applications to biharmonic equations, Appl. Anal., Volume 99 (2020) no. 9, pp. 1579-1630 | DOI | MR | Zbl

[25] Daniele A. Di Pietro; Jérôme Droniou A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes, Math. Comput., Volume 86 (2017) no. 307, pp. 2159-2191 | DOI | MR | Zbl

[26] P. Lewintan; S. Müller; Patrizio Neff Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 150 | DOI | MR | Zbl

[27] Patrizio Neff; Dirk Pauly; Karl-Josef Witsch Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible tensor fields, J. Differ. Equations, Volume 258 (2015) no. 4, pp. 1267-1302 | DOI | Zbl

Cité par Sources :

Commentaires - Politique