Comptes Rendus
A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 251-259.

Maxwell models for viscoelastic flows are famous for their potential to unify elastic motions of solids with viscous motions of liquids in the continuum mechanics perspective. But the usual Maxwell models allow one to define well motions mostly for one-dimensional flows only. To define unequivocal multi-dimensional viscoelastic flows (as solutions to well-posed initial-value problems) we advocated in [ESAIM:M2AN 55 (2021), p. 807-831] an upper-convected Maxwell model for compressible flows with a symmetric-hyperbolic formulation. Here, that model is derived again, with new details.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.165
Keywords: Viscoelastic flows, Maxwell fluids, Symmetric-hyperbolic systems of conservation laws, Elastodynamics of hyperelastic materials, Stress relaxation

Sébastien Boyaval 1, 2

1 LHSV, Ecole des Ponts, EDF R&D, Chatou, France
2 MATHERIALS, Inria, Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S1_251_0,
     author = {S\'ebastien Boyaval},
     title = {A viscoelastic flow model of {Maxwell-type} with a symmetric-hyperbolic formulation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {251--259},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.165},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Boyaval
TI  - A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 251
EP  - 259
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.165
LA  - en
ID  - CRMECA_2023__351_S1_251_0
ER  - 
%0 Journal Article
%A Sébastien Boyaval
%T A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation
%J Comptes Rendus. Mécanique
%D 2023
%P 251-259
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.165
%G en
%F CRMECA_2023__351_S1_251_0
Sébastien Boyaval. A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 251-259. doi : 10.5802/crmeca.165. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.165/

[1] J. E. Marsden; T. J. R. Hughes Mathematical Foundations of Elasticity, Dover Civil and Mechanical Engineering, Dover Publications, New York, 2012

[2] C. M. Dafermos Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016 | DOI

[3] S. Boyaval Viscoelastic flows of Maxwell fluids with conservation laws, ESAIM Math. Model. Numer. Anal., Volume 55 (2021) no. 3, pp. 807-831 | DOI | Zbl

[4] D. H. Wagner Symmetric-hyperbolic equations of motion for a hyperelastic material, J. Hyperbolic Differ. Equ., Volume 6 (2009) no. 3, pp. 615-630 | DOI | Zbl

[5] L. R. G. Treloar The Physics of Rubber Elasticity, Oxford University Press, USA, 2005

[6] B. Després; C. Mazeran Lagrangian gas dynamics in two dimensions and lagrangian systems, Arch. Rat. Mech. Anal., Volume 178 (2005) no. 3, pp. 327-372 | DOI | Zbl

[7] François Golse The Boltzmann equation and its hydrodynamic limits, Evolutionary Equations (Handbook of Differential Equations), Volume II, Elsevier/North-Holland, Amsterdam, 2005 | Zbl

[8] B. D. Coleman; W. Noll The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal., Volume 13 (1963) no. 1, pp. 167-178 | DOI | Zbl

[9] J. C. Maxwell IV. On double refraction in a viscous fluid in motion, Proc. R. Soc. Lond., Volume 22 (1874) no. 148-155, pp. 46-47

[10] R. G. Owens; T. N. Philips Computational Rheology, Imperial College Press/World Scientific, Singapore, 2002 | DOI

[11] L. Preziosi; D. D. Joseph Stokes’ first problem for viscoelastic fluids, J. Non-Newton. Fluid Mech., Volume 25 (1987) no. 3, pp. 239-259 | DOI | Zbl

[12] L. E. Payne; B. Straughan Convergence of the equations for a Maxwell fluid, Stud. Appl. Math., Volume 103 (1999) no. 3, pp. 267-278 | DOI | Zbl

[13] Sébastien Boyaval About the structural stability of Maxwell fluids: convergence toward elastodynamics (2022) (hal-03899611) (Technical report)

[14] P. C. Bollada; T. N. Phillips On the mathematical modelling of a compressible viscoelastic fluid, Arch. Rat. Mech. Anal., Volume 205 (2012) no. 1, pp. 1-26 | DOI | Zbl

[15] C. M. Dafermos Non-convex entropies for conservation laws with involutions, Philos. Trans. R. Soc. Lond. Ser. A, Volume 371 (2013) no. 2005, 20120344 | Zbl

[16] E. H. Lieb Convex trace functions and the Wigner–Yanase–Dyson conjecture, Adv. Math., Volume 11 (1973), pp. 267-288 | DOI | Zbl

[17] S. Boyaval; M. Dostalík Non-isothermal viscoelastic flows with conservation laws and relaxation, J. Hyperbolic Differ. Equ., Volume 19 (2022) no. 2, pp. 337-364 | DOI | Zbl

Cited by Sources:

Comments - Policy