Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.
Révisé le :
Accepté le :
Première publication :
Publié le :
Rutger A. Biezemans 1, 2 ; Claude Le Bris 1, 2 ; Frédéric Legoll 1, 2 ; Alexei Lozinski 2, 3
@article{CRMECA_2023__351_S1_135_0, author = {Rutger A. Biezemans and Claude Le Bris and Fr\'ed\'eric Legoll and Alexei Lozinski}, title = {Non-intrusive implementation of a wide variety of {Multiscale} {Finite} {Element} {Methods}}, journal = {Comptes Rendus. M\'ecanique}, pages = {135--180}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.178}, language = {en}, }
TY - JOUR AU - Rutger A. Biezemans AU - Claude Le Bris AU - Frédéric Legoll AU - Alexei Lozinski TI - Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods JO - Comptes Rendus. Mécanique PY - 2023 SP - 135 EP - 180 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.178 LA - en ID - CRMECA_2023__351_S1_135_0 ER -
%0 Journal Article %A Rutger A. Biezemans %A Claude Le Bris %A Frédéric Legoll %A Alexei Lozinski %T Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods %J Comptes Rendus. Mécanique %D 2023 %P 135-180 %V 351 %N S1 %I Académie des sciences, Paris %R 10.5802/crmeca.178 %G en %F CRMECA_2023__351_S1_135_0
Rutger A. Biezemans; Claude Le Bris; Frédéric Legoll; Alexei Lozinski. Non-intrusive implementation of a wide variety of Multiscale Finite Element Methods. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 135-180. doi : 10.5802/crmeca.178. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.178/
[1] Numerical homogenization beyond scale separation, Acta Numer., Volume 30 (2021), pp. 1-86 | DOI | MR | Zbl
[2] The Heterogeneous Multiscale Methods, Commun. Math. Sci., Volume 1 (2003) no. 1, pp. 87-132 | DOI | MR | Zbl
[3] Localization of elliptic multiscale problems, Math. Comput., Volume 83 (2014) no. 290, pp. 2583-2603 | DOI | MR | Zbl
[4] A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, J. Comput. Phys., Volume 134 (1997) no. 1, pp. 169-189 | DOI | MR | Zbl
[5] The heterogeneous multiscale method, Acta Numer., Volume 21 (2012), pp. 1-87 | DOI | MR | Zbl
[6] Multiscale Finite Element Methods, Surveys and Tutorials in the Applied Mathematical Sciences, 4, Springer, 2009 | DOI | Zbl
[7] Examples of computational approaches for elliptic, possibly multiscale PDEs with random inputs, J. Comput. Phys., Volume 328 (2017), pp. 455-473 | DOI | MR | Zbl
[8] Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., Volume 20 (1983) no. 3, pp. 510-536 | DOI | MR | Zbl
[9] MsFEM à la Crouzeix–Raviart for Highly Oscillatory Elliptic Problems, Chin. Ann. Math., Ser. B, Volume 34 (2013) no. 1, pp. 113-138 | DOI | MR | Zbl
[10] A numerical comparison of some Multiscale Finite Element approaches for advection-dominated problems in heterogeneous media, ESAIM, Math. Model. Numer. Anal., Volume 51 (2017) no. 3, pp. 851-888 | DOI | MR | Zbl
[11] A residual-driven local iterative corrector scheme for the multiscale finite element method, J. Comput. Phys., Volume 377 (2019), pp. 60-88 | DOI | MR | Zbl
[12] Non-intrusive implementation of Multiscale Finite Element Methods: An illustrative example, J. Comput. Phys., Volume 477 (2023), 111914 | DOI | MR | Zbl
[13] Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Publishing Inc., 1985 | Zbl
[14] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, 2001 | DOI | Zbl
[15] Numerical Models for Differential Problems, MS&A. Modeling, Simulation and Applications, 16, Springer, 2018 | DOI | Zbl
[16] The finite element method for elliptic problems, Studies in Mathematics and its Applications, North-Holland, 1978 no. 4 | Zbl
[17] Theory and Practice of Finite Elements, Applied Mathematical Sciences, 159, Springer, 2004 | DOI | Zbl
[18] Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, 5, North-Holland, 1978 | Zbl
[19] Homogenization of Differential Operators and Integral Functionals, Springer Berlin, 1994 | Zbl
[20] Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer, 2002 | DOI | Zbl
[21] -Convergence, Topics in the Mathematical Modelling of Composite Materials (Progress in Nonlinear Differential Equations and their Applications), Volume 31, Birkhäuser, 1997, pp. 21-43 | DOI | Zbl
[22] Multiscale methods: non-intrusive implementation, advection-dominated problems and related topics, PhD thesis, École des Ponts ParisTech, Paris, France (2023) (in preparation.)
[23] A Multiscale Finite Element Method for Numerical Homogenization, Multiscale Model. Simul., Volume 4 (2005) no. 3, pp. 790-812 | DOI | MR | Zbl
[24] High-Order Multiscale Finite Element Method for Elliptic Problems, Multiscale Model. Simul., Volume 12 (2014) no. 2, pp. 650-666 | DOI | MR | Zbl
[25] An MsFEM Approach Enriched Using Legendre Polynomials, Multiscale Model. Simul., Volume 20 (2022) no. 2, pp. 798-834 | DOI | MR | Zbl
[26] A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework, Computing, Volume 82 (2008) no. 2-3, pp. 103-119 | DOI | Zbl
[27] A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE, Computing, Volume 82 (2008) no. 2-3, pp. 121-138 | DOI | Zbl
[28] EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications, Euro-Par 2014: Parallel Processing Workshops (Lecture Notes in Computer Science), Volume 8806, Springer, 2014, pp. 530-541 | DOI
[29] Advances Concerning Multiscale Methods and Uncertainty Quantification in EXA-DUNE, Software for Exascale Computing - SPPEXA 2013-2015 (Lecture Notes in Computational Science and Engineering), Volume 113, Springer, 2016, pp. 25-43 | DOI | MR
[30] Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems, Numer. Math., Volume 78 (1997) no. 2, pp. 165-188 | DOI | MR | Zbl
[31] Multiscale Finite Element Methods for Advection-Dominated Problems in Perforated Domains, Multiscale Model. Simul., Volume 17 (2019) no. 2, pp. 773-825 | DOI | MR | Zbl
[32] An MsFEM type approach for perforated domains, Multiscale Model. Simul., Volume 12 (2014) no. 3, pp. 1046-1077 | DOI | Zbl
[33] Crouzeix-Raviart MsFEM with Bubble Functions for Diffusion and Advection-Diffusion in Perforated Media, Commun. Comput. Phys., Volume 17 (2015) no. 4, pp. 887-907 | DOI | MR | Zbl
[34] Nonconforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media. Part I: Methodologies and Numerical Experiments, Multiscale Model. Simul., Volume 13 (2015) no. 4, pp. 1146-1172 | DOI | MR | Zbl
[35] Non-Conforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media. Part II: error estimates for periodic microstructure (2018) (https://arxiv.org/abs/1802.04389, submitted)
[36] Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., Volume 127 (1995) no. 1-4, pp. 387-401 | DOI | MR | Zbl
[37] The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., Volume 166 (1998) no. 1-2, pp. 3-24 | DOI | MR | Zbl
[38] Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., Volume 4 (1994) no. 4, pp. 571-587 | DOI | MR | Zbl
[39] , Comput. Methods Appl. Mech. Eng., Volume 145 (1997), pp. 329-339 | Zbl
[40] Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., Volume 37 (2000) no. 3, pp. 888-910 | DOI | MR | Zbl
[41] Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov–Galerkin Formulation, Commun. Math. Sci., Volume 2 (2004) no. 2, pp. 185-205 | DOI | MR | Zbl
[42] Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flow with Particular Emphasis on the Incompressible Navier–Stokes Equation, Comput. Methods Appl. Mech. Eng., Volume 32 (1982), pp. 199-259 | DOI | MR | Zbl
[43] A New Finite Element Method Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations, Comput. Methods Appl. Mech. Eng., Volume 73 (1989), pp. 173-189 | DOI | MR | Zbl
[44] Recovering SUPG using Petrov–Galerkin formulations enriched with adjoint residual-free bubbles, Comput. Methods Appl. Mech. Eng., Volume 182 (2000) no. 3-4, pp. 333-339 | DOI | MR | Zbl
[45] Computation of Quasi-Local Effective Diffusion Tensors and Connections to the Mathematical Theory of Homogenization, Multiscale Model. Simul., Volume 15 (2017) no. 4, pp. 1530-1552 | DOI | MR | Zbl
[46] On multiscale methods in Petrov–Galerkin formulation, Numer. Math., Volume 131 (2015) no. 4, pp. 643-682 | DOI | MR | Zbl
[47] Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., Volume 187 (2003) no. 1, pp. 47-67 | DOI | Zbl
[48] Iterative multiscale finite-volume method, J. Comput. Phys., Volume 227 (2008) no. 19, pp. 8604-8621 | DOI | MR | Zbl
[49] A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comput., Volume 72 (2002) no. 242, pp. 541-576 | DOI | MR | Zbl
[50] Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow, Comput. Geosci., Volume 6 (2002), pp. 453-481 | DOI | MR | Zbl
[51] A Multiscale Mortar Mixed Finite Element Method, Multiscale Model. Simul., Volume 6 (2007) no. 1, pp. 319-346 | DOI | MR | Zbl
[52] The Chimera method for a model problem, Numerical Mathematics and Advanced Applications (Franco Brezzi; Annalisa Buffa; Stefania Corsaro; Almerico Murli, eds.), Springer, 2003, pp. 817-825 | DOI | Zbl
[53] Finite element approximation of multi-scale elliptic problems using patches of elements, Numer. Math., Volume 101 (2005) no. 4, pp. 663-687 | DOI | MR | Zbl
[54] Numerical zoom for multiscale problems with an application to nuclear waste disposal, J. Comput. Phys., Volume 224 (2007) no. 1, pp. 403-413 | DOI | MR | Zbl
[55] Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition, Arch. Comput. Methods Eng., Volume 23 (2016) no. 1, pp. 17-38 | DOI | MR | Zbl
[56] Analysis of three-dimensional fracture mechanics problems: A non-intrusive approach using a generalized finite element method, Eng. Fract. Mech., Volume 90 (2012), pp. 41-64 | DOI
[57] Une méthode combinée d’éléments finis à deux grilles/bases réduites pour l’approximation des solutions d’une E.D.P. paramétrique (A two-grid finite-element/reduced basis scheme for the approximation of the solution of parametric dependent P.D.E.), C. R., Math., Acad. Sci. Paris, Volume 347 (2009) no. 7-8, pp. 435-440 | DOI | Zbl
[58] A non-intrusive reduced basis approach for parametrized heat transfer problems, J. Comput. Phys., Volume 376 (2019), pp. 617-633 | DOI | MR | Zbl
[59] Error estimate of the non-intrusive reduced basis method with finite volume schemes, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 5, pp. 1941-1961 | DOI | MR | Zbl
[60] Multiscale Finite Element approach for “weakly” random problems and related issues, ESAIM, Math. Model. Numer. Anal., Volume 48 (2014) no. 3, pp. 815-858 | DOI | Numdam | MR | Zbl
[61] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | MR | Zbl
[62] MsFEM in FreeFEM: Release version 1.0.0, 2023 (doi: 10.5281/zenodo.7525059)
Cité par Sources :
Commentaires - Politique