Comptes Rendus
A projection-based approach to extend digital volume correlation for 4D spacetime measurements
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 265-280.

In-situ (tomography) experiments are generally based on scans reconstructed from a large number of projections acquired under constant deformation of samples. Standard digital volume correlation (DVC) methods are based on a limited number of scans due to acquisition duration. They thus prevent analyses of time-dependent phenomena. In this paper, a modal procedure is proposed that allows time-dependent occurrences to be analyzed. It estimates spacetime displacement fields during the whole loading history. The spatial modes are based on standard DVC, which is subsequently enriched using projection-based digital volume correlation (P-DVC) to measure the temporal amplitudes. The method is applied to two cases, namely, a virtual experiment mimicking wedge splitting and an actual shear test on a pantographic metamaterial inducing large motions. With the proposed method, the temporal amplitude in the real test was measured for each projection leading to a temporal resolution of one tenth of a second and the analysis of 16,400 time steps. For the proposed algorithm, the sensitivity to the acquisition angle of the sample was investigated and measurement uncertainties were assessed.

Published online:
DOI: 10.5802/crmeca.192
Keywords: Digital volume correlation (DVC), in-situ tests, spacetime analyses, tomography

Viktor Kosin 1, 2; Amélie Fau 3; Clément Jailin 4; Benjamin Smaniotto 3; Thomas Wick 2, 3; François Hild 3

1 Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS LMPS–Laboratoire de Mécanique Paris-Saclay, Gif-sur-Yvette, France
2 Leibniz Universität Hannover, Institut für Angewandte Mathematik (IFAM), Hannover, Germany
3 Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS LMPS–Laboratoire de Mécanique Paris-Saclay, Gif-sur-Yvette, France
4 GE Healthcare, Buc, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Viktor Kosin and Am\'elie Fau and Cl\'ement Jailin and Benjamin Smaniotto and Thomas Wick and Fran\c{c}ois Hild},
     title = {A projection-based approach to extend digital volume correlation for {4D} spacetime measurements},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {265--280},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.192},
     language = {en},
AU  - Viktor Kosin
AU  - Amélie Fau
AU  - Clément Jailin
AU  - Benjamin Smaniotto
AU  - Thomas Wick
AU  - François Hild
TI  - A projection-based approach to extend digital volume correlation for 4D spacetime measurements
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 265
EP  - 280
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.192
LA  - en
ID  - CRMECA_2023__351_G2_265_0
ER  - 
%0 Journal Article
%A Viktor Kosin
%A Amélie Fau
%A Clément Jailin
%A Benjamin Smaniotto
%A Thomas Wick
%A François Hild
%T A projection-based approach to extend digital volume correlation for 4D spacetime measurements
%J Comptes Rendus. Mécanique
%D 2023
%P 265-280
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.192
%G en
%F CRMECA_2023__351_G2_265_0
Viktor Kosin; Amélie Fau; Clément Jailin; Benjamin Smaniotto; Thomas Wick; François Hild. A projection-based approach to extend digital volume correlation for 4D spacetime measurements. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 265-280. doi : 10.5802/crmeca.192.

[1] Avinash C. Kak; Malcolm Slaney Principles of Computerized Tomographic Imaging, Classics in Applied Mathematics, 33, Society for Industrial and Applied Mathematics, 2001 | Zbl

[2] E. Maire; P. J. Withers Quantitative X-ray tomography, Int. Mater. Rev., Volume 59 (2014) no. 1, pp. 1-43 | DOI

[3] J. Y. Buffière; E. Maire; J. Adrien; J. P. Masse; E. Boller In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics, Exp. Mech., Volume 50 (2010) no. 3, pp. 289-305 | DOI

[4] B. K. Bay Methods and applications of digital volume correlation, J. Strain Anal. Eng. Des., Volume 43 (2008), pp. 745-760 | DOI

[5] M. A. Sutton Computer Vision-Based, Noncontacting Deformation Measurements in Mechanics: A Generational Transformation, Appl. Mech. Rev., Volume 65 (2013) no. 5, 050802 | DOI

[6] Ante F. Buljac; C. Jailin; A. Mendoza; J. Neggers; T. Taillandier-Thomas; Amine Bouterf; B. Smaniotto; François Hild; Stéphane Roux Digital Volume Correlation: Review of Progress and Challenges, Exp. Mech., Volume 58 (2018) no. 5, pp. 661-708 | DOI

[7] R. Vargas; R. B. Canto; B. Smaniotto; François Hild Calibration of cohesive parameters for a castable refractory using 4D tomographic data and realistic crack path from in-situ wedge splitting test, J. Eur. Ceram. Soc., Volume 43 (2023) no. 2, pp. 676-691 | DOI

[8] O. Ludwig; M. Dimichiel; L. Salvo; M. Suéry; P. Falus In-situ Three-Dimensional Microstructural Investigation of Solidification of an Al-Cu Alloy by Ultrafast X-ray Microtomography, Metall. Mater. Trans. A, Volume 36 (2005) no. 6, pp. 1515-1523 | DOI

[9] P. Lhuissier; M. Scheel; L. Salvo; M. Di Michiel; J. J. Blandin Continuous characterization by X-ray microtomography of damage during high-temperature deformation of magnesium alloy, Scr. Mater., Volume 69 (2013) no. 1, pp. 85-88 | DOI

[10] E. Maire; C. Le Bourlot; J. Adrien; A. Mortensen; R. Mokso 20 Hz X-ray tomography during an in situ tensile test, Int. J. Fract., Volume 200 (2016), pp. 3-12 | DOI

[11] Francesco García-Moreno; Paul H. Kamm; Tillmann R. Neu; Felix Bülk; R. Mokso; C. M. Schlepütz; M. Stampanoni; J. Banhart Using X-ray tomoscopy to explore the dynamics of foaming metal, Nat. Commun., Volume 10 (2019), 3762

[12] H. Leclerc; Stéphane Roux; François Hild Projection Savings in CT-based Digital Volume Correlation, Exp. Mech., Volume 55 (2015) no. 1, pp. 275-287 | DOI

[13] T. Taillandier-Thomas; Stéphane Roux; François Hild Soft route to 4D tomography, Phys. Rev. Lett., Volume 117 (2016) no. 2, 025501 | DOI | MR

[14] C. Jailin; Amine Bouterf; M. Poncelet; Stéphane Roux In situ μ CT-scan Mechanical Tests: Fast 4D Mechanical Identification, Exp. Mech., Volume 57 (2017), pp. 1327–-1340 | DOI

[15] M. H. Khalili; S. Brisard; M. Bornert; P. Aimedieu; J.-M. Pereira; J.-N. Roux Discrete Digital Projections Correlation: a reconstruction-free method to quantify local kinematics in granular media by X-ray tomography, Exp. Mech., Volume 57 (2017) no. 6, pp. 819-830 | DOI

[16] Clément Jailin; Amine Bouterf; Rafael Vargas; François Hild; Stéphane Roux Sub-minute in situ Fracture Test in a Lab CT-scanner, Integr. Mater. Manuf. Innov., Volume 8 (2019), pp. 413-422 | DOI

[17] Stéphane Roux; François Hild; P. Viot; D. Bernard Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A Appl. Sci. Manuf., Volume 39 (2008) no. 8, pp. 1253-1265 | DOI

[18] Space-time methods: Application to Partial Differential Equations (U. Langer; O. Steinbach, eds.), Radon Series on Computational and Applied Mathematics, 25, Walter de Gruyter, 2019

[19] T. Wick Space-time methods: formulations, discretization, solution, goal-oriented error control and adaptivity (2023) (, to appear in Springer, Compact Textbooks in Mathematics)

[20] S. Larsson; R. H. Nochetto; S. A. Sauter; Ch. Wieners Space-time Methods for Time-dependent Partial Differential Equations, Oberwolfach Rep., Volume 6 (2022) no. 1, pp. 1-80 | DOI

[21] Clément Jailin; Ante F. Buljac; Amine Bouterf; François Hild; Stéphane Roux Fast 4D tensile test monitored via X-CT: Single projection based Digital Volume Correlation dedicated to slender samples, J. Strain Anal. Eng. Des., Volume 53 (2018) no. 7, pp. 473-484 | DOI

[22] C. Jailin; Ante F. Buljac; Amine Bouterf; François Hild; Stéphane Roux Fast four-dimensional tensile test monitored via X-ray computed tomography: Elastoplastic identification from radiographs, J. Strain Anal. Eng. Des., Volume 54 (2019) no. 1, pp. 44-53 | DOI | Zbl

[23] M. A. Sutton; J. J. Orteu; H. Schreier Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications, Springer, 2009 | DOI

[24] Roberto Fedele; Luca Galantucci; Antonia Ciani Global 2D digital image correlation for motion estimation in a finite element framework: a variational formulation and a regularized, pyramidal, multi-grid implementation, Int. J. Numer. Methods Eng., Volume 96 (2013) no. 12, pp. 739-762 | DOI | Zbl

[25] Peter Deuflhard Newton Methods for Nonlinear Problems. Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics, 35, Springer, 2011 | DOI | Zbl

[26] Roberto Fedele; Antonia Ciani; Luca Galantucci; Matteo Bettuzzi; Luca Andena A regularized, pyramidal multi-grid approach to global 3D-volume digital image correlation based on X-ray micro-tomography, Fundam. Inf., Volume 125 (2013) no. 3-4, pp. 361-376 | DOI | MR

[27] J. Neggers; B. Blaysat; J. P. M. Hoefnagels; M. G. D. Geers On image gradients in digital image correlation, Int. J. Numer. Methods Eng., Volume 105 (2016) no. 4, pp. 243-260 | DOI | MR

[28] Philippe G. Ciarlet The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland, 1978 | Zbl

[29] Wim van Aarle; Willem Jan Palenstijn; Jan De Beenhouwer; Thomas Altantzis; Sara Bals; K. Joost Batenburg; Jan Sijbers The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, Volume 157 (2015), pp. 35-47 | DOI

[30] Wim van Aarle; Willem Jan Palenstijn; Jeroen Cant; Eline Janssens; Folkert Bleichrodt; Andrei Dabravolski; Jan De Beenhouwer; K. Joost Batenburg; Jan Sijbers Fast and flexible X-ray tomography using the ASTRA toolbox, Opt. Express, Volume 24 (2016) no. 22, pp. 25129-25147 | DOI

[31] H. Leclerc; J. Neggers; F. Mathieu; François Hild; Stéphane Roux Correli 3.0, 2015 Agence pour la Protection des Programmes, Paris (France)

[32] F. dell’Isola; P. Seppecher; M. Spagnuolo; E. Barchiesi; François Hild; T. Lekszycki; I. Giorgio; L. Placidi; U. Andreaus; M. Cuomo; S. R. Eugster; A. Pfaff; K. Hoschke; R. Langkemper; E. Turco; R. Sarikaya; A. Misra; M. De Angelo; F. D’Annibale; Amine Bouterf; X. Pinelli; A. Misra; B. Desmorat; M. Pawlikowski; C. Dupuy; D. Scerrato; P. Peyre; M. Laudato; L. Manzari; P. Göransson; C. Hesch; S. Hesch; P. Franciosi; J. Dirrenberger; F. Maurin; Z. Vangelatos; C. Grigoropoulos; V. Melissinaki; M. Farsari; W. Muller; E. Abali; C. Liebold; G. Ganzosch; P. Harrison; R. Drobnicki; L. A. Igumnov; F. Alzahrani; T. Hayat Advances in Pantographic Structures: Design, Manufacturing, Models, Experiments and Image Analyses, Contin. Mech. Thermodyn., Volume 31 (2019) no. 4, pp. 1231-1282 | DOI | Zbl

Cited by Sources:

Comments - Policy