Comptes Rendus
A Variational Calculation of Diffusive Flux in a Mixed Boundary Value Problem
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 247-263.

A variational solution to the transient heat flow measure above a closed conductive region of arbitrary perimeter aspect, held at constant temperature, and which is embedded in an otherwise insulating boundary plane, is presented. Upon developing the general variational formulation, a full range solution for the circular disk conductor is considered as an example when implementing a two term trial function that comprises a general form based on known physical solutions to the problem at long and short times. The particular combination of the Lagrange density for the total transient diffusive flux and of the form of the trial functions are evidently effective in dealing with the difficulties often experienced when dealing with mixed boundary value heat transfer problems of the parabolic type which have a non-periodic time variable.

Une solution variationnelle à la mesure du flux thermique transitoire au-dessus d’une région conductrice fermée d’aspect de périmètre arbitraire, maintenue à température constante, et qui est encastrée dans un plan limite autrement isolant, est présentée. Après avoir développé la formulation variationnelle générale, une solution complète pour le conducteur en forme de disque circulaire est considérée comme un exemple lors de la mise en œuvre d’une fonction d’essai à deux termes qui comprend une forme générale basée sur des solutions physiques connues du problème à des temps longs et courts. La combinaison particulière de la densité de Lagrange pour le flux diffusif transitoire total et de la forme des fonctions d’essai est évidemment efficace pour traiter les difficultés souvent rencontrées lors du traitement des problèmes de transfert de chaleur à valeur limite mixte de type parabolique qui ont une variable temporelle non périodique.

Received:
Accepted:
Published online:
DOI: 10.5802/crmeca.198
Keywords: Variational solution, Embedded conductor, Mixed boundary condition, Heat equation, Circular Disk
Mot clés : Solution variationnelle, conducteur incorporé, condition limite mixte, équation de la chaleur, disque circulaire

William Pons 1; Stanley Pons 2, 3

1 Department of Chemistry, Clemson University, Clemson SC 29634, USA
2 Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (Prior affiliation where work was conceived)
3 Pons(EI), 14, r. Eugene Giraud, 06560 Valbonne, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_G2_247_0,
     author = {William Pons and Stanley Pons},
     title = {A {Variational} {Calculation} of {Diffusive} {Flux} in a {Mixed} {Boundary} {Value} {Problem}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {247--263},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.198},
     language = {en},
}
TY  - JOUR
AU  - William Pons
AU  - Stanley Pons
TI  - A Variational Calculation of Diffusive Flux in a Mixed Boundary Value Problem
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 247
EP  - 263
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.198
LA  - en
ID  - CRMECA_2023__351_G2_247_0
ER  - 
%0 Journal Article
%A William Pons
%A Stanley Pons
%T A Variational Calculation of Diffusive Flux in a Mixed Boundary Value Problem
%J Comptes Rendus. Mécanique
%D 2023
%P 247-263
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.198
%G en
%F CRMECA_2023__351_G2_247_0
William Pons; Stanley Pons. A Variational Calculation of Diffusive Flux in a Mixed Boundary Value Problem. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 247-263. doi : 10.5802/crmeca.198. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.198/

[1] Philip M. Morse; Herman Feshbach Methods of Theoretical Physics, 1-2, McGraw-Hill Book Co., 1953 | MR | Zbl

[2] Harold Levine; Julian Schwinger On the Theory of Diffraction by an Aperture in an Infinite Plane Screen. I, Phys. Rev., Volume 74 (1948) no. 8, pp. 958-974 | DOI | Zbl

[3] S. Zaremba Sur un problème mixte relatif à l’équation de Laplace, Bulletin de l’Académie des sciences de Cracovie, Classe des sciences mathématiques et naturelles, serie A (1910), pp. 313-344 | Zbl

[4] L. K. Bieniasz A New Theory of Potential Step Chronoamperometry at a Microdisk Electrode: Complete Explicit Semi-Analytical Formulae for the Faradaic Current Density and the Faradaic Current, Electrochim. Acta, Volume 199 (2016), pp. 1-11 | DOI

[5] L. K. Bieniasz Highly accurate, inexpensive procedures for computing chronoamperometric current, integral transformation kernel, and related integrals, for an inlaid disk electrode, Electrochim. Acta, Volume 259 (2018), pp. 1068-1080 | DOI

[6] Peter J. Mahon; Keith B. Oldham Diffusion-Controlled Chronoamperometry at a Disk Electrode, Anal. Chem., Volume 77 (2005) no. 18, pp. 6100-6101 (PMID: 16159148) | DOI

[7] Koichi Aoki; Janet Osteryoung Formulation of the diffusion-controlled current at very small stationary disk electrodes, J. Electroanal. Chem., Volume 160 (1984) no. 1, pp. 335-339 | DOI

[8] David Shoup; Attila Szabo Chronoamperometric current at finite disk electrodes, J. Electroanal. Chem., Volume 140 (1982) no. 2, pp. 237-245 | DOI

[9] L. Rajendran; M. V. Sangaranarayanan A two-point Padé approximation for the non-steady-state chronoamperometric current at ultramicrodisc electrodes, J. Electroanal. Chem., Volume 392 (1995) no. 1, pp. 75-78 | DOI

[10] L. Rajendran; L. Lakshmanan; M. V. Sangaranarayanan Diffusion at ultramicroelectrodes: chronoamperometric current response using Padé approximation, J. Phys. Chem. B, Volume 101 (1997), p. 4583 | DOI

[11] L. Rajendran; M. V. Sangaranarayanan Diffusion at Ultramicro Disk Electrodes: Chronoamperometric Current for Steady-State Ec‘ Reaction Using Scattering Analogue Techniques, J. Phys. Chem. B, Volume 103 (1999) no. 9, pp. 1518-1524 | DOI

[12] Charles Garrett Phillips; Kalvis M. Jansons The short-time transient of diffusion outside a conducting body, Proc. R. Soc. Lond., Ser. A, Volume 428 (1990) no. 1875, pp. 431-449 | DOI | Zbl

[13] Najib Laraqi Compact and accurate approximants to determine the transient current at the disc electrode under different boundary conditions, Electrochim. Acta, Volume 56 (2011) no. 7, pp. 2877-2880 | DOI

[14] Dieter Britz; Jörg Strutwolf Digital Simulation in Electrochemistry, 1, Springer, 2016 | DOI

[15] William Pons; Stanley Pons Average Surface Temperature Over the Circular Disk Heat Source/Sink Embedded in an Insulating Boundary Plane. Analytic Solution., C. R. Méc. Acad. Sci. Paris, Volume 351 (2023), pp. 17-27 | DOI

[16] Burton D Fried; Samuel D Conte The plasma dispersion function: the Hilbert transform of the Gaussian, Academic Press Inc., 1961, 426 pages

Cited by Sources:

Comments - Policy