Comptes Rendus
Numerical analysis of an incompressible soft material poromechanics model using T-coercivity
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 17-52.

This article is devoted to the numerical analysis of the full discretization of a generalized poromechanical model resulting from the linearization of an initial model fitted to soft tissue perfusion. Our strategy here is based on the use of energy-based estimates and T-coercivity methods, so that the numerical analysis benefits from the essential tools used in the existence analysis of the continuous-time and continuous-space formulation. In particular, our T-coercivity strategy allows us to obtain the necessary inf-sup condition for the global system from the inf-sup condition restricted to a subsystem having the same structure as the Stokes problem. This allows us to prove that any finite element pair adapted to the Stokes problem is also suitable for this global poromechanical model regardless of porosity and permeability, generalizing previous results from the literature studying this model.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.194
Mots clés : Poromechanics, mixture theory, incompressible limit, total discretization, inf-sup stability, energy preserving time-scheme
Mathieu Barré 1, 2 ; Céline Grandmont 3, 4, 5 ; Philippe Moireau 6, 2

1 Inria, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
2 LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
3 Inria, 2 Rue Simone Iff, 75012 Paris, France
4 LJLL, Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
5 Département de Mathématique, Université Libre de Bruxelles, CP 214, Boulevard du Triomphe, 1050 Bruxelles, Belgium
6 Inria, Batiment Alan Turing, 1 Rue Honoré d’Estienne d’Orves, Campus de l’École Polytechnique, 91120 Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S1_17_0,
     author = {Mathieu Barr\'e and C\'eline Grandmont and Philippe Moireau},
     title = {Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {17--52},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.194},
     language = {en},
}
TY  - JOUR
AU  - Mathieu Barré
AU  - Céline Grandmont
AU  - Philippe Moireau
TI  - Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 17
EP  - 52
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.194
LA  - en
ID  - CRMECA_2023__351_S1_17_0
ER  - 
%0 Journal Article
%A Mathieu Barré
%A Céline Grandmont
%A Philippe Moireau
%T Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity
%J Comptes Rendus. Mécanique
%D 2023
%P 17-52
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.194
%G en
%F CRMECA_2023__351_S1_17_0
Mathieu Barré; Céline Grandmont; Philippe Moireau. Numerical analysis of an incompressible soft material poromechanics model using $\tt {T}$-coercivity. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 17-52. doi : 10.5802/crmeca.194. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.194/

[1] Maurice A. Biot General theory of three-dimensional consolidation, J. Appl. Physics, Volume 12 (1941) no. 2, pp. 155-164 | DOI | Zbl

[2] K. Terzaghi Theoretical soil mechanics, John Wiley & Sons, 1943 | DOI

[3] Thomas F. Russell; Mary F. Wheeler The Mathematics of Reservoir Simulation, The Mathematics of Reservoir Simulation (Frontiers in Applied Mathematics), Volume 1, Society for Industrial and Applied Mathematics, 1983, pp. 35-106 | Zbl

[4] Ming Yang; Larry A. Taber The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle, J. Biomech., Volume 24 (1991) no. 7, pp. 587-597 | DOI

[5] J. M. Huyghe; T. Arts; D. H. van Campen; R. S. Reneman Porous Medium Finite Element Model of the Beating Left Ventricle, American Journal of Physiology-Heart and Circulatory Physiology, Volume 262 (1992) no. 4, p. H1256-H1267 | DOI

[6] Abdul-Rahim A. Khaled; Kambiz Vafai The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transfer, Volume 46 (2003) no. 26, pp. 4989-5003 | DOI | Zbl

[7] Dominique Chapelle; Jean-Frédéric Gerbeau; Jacques Sainte-Marie; Irene E. Vignon-Clementel A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., Volume 46 (2010) no. 1, pp. 91-101 | DOI | Zbl

[8] B. Tully; Yiannis Ventikos Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus, J. Fluid Mech., Volume 667 (2011), pp. 188-215 | DOI | Zbl

[9] C. Michler; A. N. Cookson; R. Chabiniok; E. Hyde; J. Lee; M. Sinclair; T. Sochi; A. Goyal; G. Vigueras; D. A. Nordsletten; N. P. Smith A Computationally Efficient Framework for the Simulation of Cardiac Perfusion Using a Multi-Compartment Darcy Porous-Media Flow Model, Int. J. Numer. Methods Biomed. Eng., Volume 29 (2013) no. 2, pp. 217-232 | DOI

[10] Lorenz Berger; Rafel Bordas; Kelly Burrowes; Vicente Grau; Simon Tavener; David Kay A Poroelastic Model Coupled to a Fluid Network with Applications in Lung Modelling, Int. J. Numer. Methods Biomed. Eng., Volume 32 (2016) no. 1, pp. 2731-2747 | DOI

[11] John C. Vardakis; Dean Chou; Brett J. Tully; Chang C. Hung; Tsong H. Lee; Po-Hsiang Tsui; Yiannis Ventikos Investigating Cerebral Oedema Using Poroelasticity, Med. Eng. Phys., Volume 38 (2016) no. 1, pp. 48-57 | DOI

[12] Dean Chou; John C. Vardakis; Liwei Guo; Brett J. Tully; Yiannis Ventikos A Fully Dynamic Multi-Compartmental Poroelastic System: Application to Aqueductal Stenosis, J. Biomech., Volume 49 (2016) no. 11, pp. 2306-2312 | DOI

[13] Riccardo Sacco; Paola Causin; Chiara Lelli; Manuela T. Raimondi A Poroelastic Mixture Model of Mechanobiological Processes in Biomass Growth: Theory and Application to Tissue Engineering, Meccanica, Volume 52 (2017) no. 14, pp. 3273-3297 | DOI | Zbl

[14] Wesley de Jesus Lourenço; Ruy Freitas Reis; Ricardo Ruiz-Baier; Bernardo Martins Rocha; Rodrigo Weber dos Santos; Marcelo Lobosco A poroelastic approach for modelling myocardial oedema in acute myocarditis, Frontiers in Physiology, Volume 13 (2022), p. 1196 | DOI

[15] Dominique Chapelle; Philippe Moireau General coupling of porous flows and hyperelastic formulations—from thermodynamics principles to energy balance and compatible time schemes, Eur. J. Mech. B Fluids, Volume 46 (2014), pp. 82-96 | DOI | Zbl

[16] Mathieu Barré; Céline Grandmont; Philippe Moireau Analysis of a linearized poromechanics model for incompressible and nearly incompressible materials (2021) (working paper or preprint, Dec 2021,https://hal.inria.fr/hal-03501526)

[17] Bruno Burtschell; Philippe Moireau; Dominique Chapelle Numerical analysis for an energy-stable total discretization of a poromechanics model with inf-sup stability, Acta Math. Appl. Sin., Engl. Ser., Volume 35 (2019) no. 1, pp. 28-53 | DOI | Zbl

[18] Nicolás Barnafi; Paolo Zunino; Luca Dedè; Alfio Quarteroni Mathematical analysis and numerical approximation of a general linearized poro-hyperelastic model, Comput. Math. Appl., Volume 91 (2021), pp. 202-228 | DOI | Zbl

[19] Lucas Chesnel; Patrick jun. Ciarlet T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., Volume 124 (2013) no. 1, pp. 1-29 | DOI | Zbl

[20] Mathieu Barré; Patrick jun. Ciarlet The T-coercivity approach for mixed problems (2022) (working paper or preprint, Oct 2022,https://hal.archives-ouvertes.fr/hal-03820910)

[21] Olivier Pironneau; Roland Glowinski On a Mixed Finite Element Approximation of the Stokes Problem (I). Convergence of the Approximate Solutions, Numer. Math., Volume 33 (1979), pp. 397-424 | DOI | Zbl

[22] Roland Glowinski Finite Element Methods for Incompressible Viscous Flow, Numerical methods for fluids (Part 3) (Handbook of Numerical Analysis), Volume 9, Elsevier, 2003, pp. 3-1176 | DOI | Zbl

[23] Daniele Boffi; Franco Brezzi; Michel Fortin Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI | Zbl

[24] Alexandre Ern; Jean-Luc Guermond Finite Elements III: First-Order and Time-Dependent PDEs, Texts in Applied Mathematics, 74, Springer, 2021 | Zbl

[25] Maurice A. Biot Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., Volume 26 (1955) no. 2, pp. 182-185 | DOI | Zbl

[26] Maurice A. Biot; G. Temple Theory of finite deformations of porous solids, Indiana Univ. Math. J., Volume 21 (1972) no. 7, pp. 597-620 | DOI | Zbl

[27] Patrick jun. Ciarlet Mathematical Elasticity: Volume I: three-dimensional elasticity, Studies in Mathematics and its Applications, 20, North-Holland, 1988 | Zbl

[28] Annalisa Buffa Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations, SIAM J. Numer. Anal., Volume 43 (2005) no. 1, pp. 1-18 | DOI | Zbl

[29] Patrick jun. Ciarlet T-coercivity: Application to the discretization of Helmholtz-like problems, Comput. Math. Appl., Volume 64 (2012) no. 1, pp. 22-34 | DOI | Zbl

[30] Anne-Sophie Bonnet-Ben Dhia; Patrick jun. Ciarlet; C. M. Zwölf Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., Volume 234 (2010) no. 6, pp. 1912-1919 | DOI | Zbl

[31] Anne-Sophie Bonnet-Ben Dhia; Lucas Chesnel; Patrick jun. Ciarlet T-coercivity for the Maxwell problem with sign-changing coefficients, Commun. Partial Differ. Equations, Volume 39 (2014) no. 6, pp. 1007-1031 | Zbl

[32] Renata Bunoiu; Karim Ramdani; Claudia Timofte T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, Electron. J. Differ. Equ., Volume 2021 (2021), 59, 22 pages | Zbl

[33] Martin Halla Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility, Numer. Math., Volume 148 (2021) no. 2, pp. 387-407 | DOI | Zbl

[34] John Crank; Phyllis Nicolson A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Camb. Philos. Soc., Volume 43 (1947), pp. 50-67 | DOI | Zbl

[35] Bruno Burtschell; Dominique Chapelle; Philippe Moireau Effective and Energy-Preserving Time Discretization for a General Nonlinear Poromechanical Formulation, Computers & Structures, Volume 182 (2017), pp. 313-324 | DOI

[36] Patrice Hauret; Patrick Le Tallec Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 37-40, pp. 4890-4916 | DOI | Zbl

[37] Vivette Girault; Pierre-Arnaud Raviart Finite element methods for Navier-Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, 5, Springer, 2012 | DOI

[38] John G. Heywood; Rolf Rannacher Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., Volume 27 (1990) no. 2, pp. 353-384 | DOI | Zbl

[39] Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (Anders Logg; Kent-Andre Mardal; Garth N. Wells, eds.), Lecture Notes in Computational Science and Engineering, 84, Springer, 2012 | DOI

[40] Martin S. Alnæs; Jan Blechta; Johan Hake; August Johansson; Benjamin Kehlet; Anders Logg; Chris Richardson; Johannes Ring; Marie E. Rognes; Garth N. Wells The FEniCS project version 1.5, Archive of Numerical Software, Volume 3 (2015) no. 100, pp. 9-23

[41] Hagen Eichel; Lutz Tobiska; Hehu Xie Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes problem, Math. Comput., Volume 80 (2011) no. 274, pp. 697-722 | DOI | Zbl

[42] Andrea Cioncolini; Daniele Boffi The MINI Mixed Finite Element for the Stokes Problem: An Experimental Investigation, Comput. Math. Appl., Volume 77 (2019) no. 9, pp. 2432-2446 | DOI | Zbl

[43] Phillip J. Phillips; Mary F. Wheeler Overcoming the Problem of Locking in Linear Elasticity and Poroelasticity: An Heuristic Approach, Comput. Geosci., Volume 13 (2009) no. 1, pp. 5-12 | DOI | Zbl

[44] Massimiliano Ferronato; Nicola Castelletto; Giuseppe Gambolati A Fully Coupled 3-D Mixed Finite Element Model of Biot Consolidation, J. Comput. Phys., Volume 229 (2010) no. 12, pp. 4813-4830 | DOI | Zbl

[45] Joachim B. Haga; Harald Osnes; Hans P. Langtangen On the Causes of Pressure Oscillations in Low-Permeable and Low-Compressible Porous Media, Int. J. Numer. Anal. Methods Geomech., Volume 36 (2012) no. 12, pp. 1507-1522 | DOI

[46] Ricardo Oyarzuúa; Ricardo Ruiz-Baier Locking-Free Finite Element Methods for Poroelasticity, SIAM J. Numer. Anal., Volume 54 (2016) no. 5, pp. 2951-2973 | DOI | Zbl

[47] Son-Young Yi A Study of Two Modes of Locking in Poroelasticity, SIAM J. Numer. Anal., Volume 55 (2017) no. 4, pp. 1915-1936 | DOI | Zbl

[48] Jeonghun J. Lee Robust Three-Field Finite Element Methods for Biot’s Consolidation Model in Poroelasticity, BIT Numer. Math., Volume 58 (2018) no. 2, pp. 347-372 | DOI | Zbl

[49] O. C. Zienkiewicz; Maosong Huang; Jie Wu; Shiming Wu A New Algorithm for the Coupled Soil-Pore Fluid Problem, Shock. Vib., Volume 1 (1993) no. 1, pp. 3-14 | DOI

[50] Maosong Huang; Shiming Wu; O. C. Zienkiewicz Incompressible or Nearly Incompressible Soil Dynamic Behaviour–a New Staggered Algorithm to Circumvent Restrictions of Mixed Formulation, Soil Dyn. Earthq. Eng., Volume 21 (2001) no. 2, pp. 169-179 | DOI

[51] Xikui Li; Xianhong Han; M. Pastor An Iterative Stabilized Fractional Step Algorithm for Finite Element Analysis in Saturated Soil Dynamic, Comput. Methods Appl. Mech. Eng., Volume 192 (2003) no. 35, pp. 3845-3859 | DOI | Zbl

[52] Bernd Markert; Yousef Heider; Wolfgang Ehlers Comparison of Monolithic and Splitting Solution Schemes for Dynamic Porous Media Problems, Int. J. Numer. Methods Eng., Volume 82 (2010) no. 11, pp. 1341-1383 | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Existence of a solution for an unsteady elasticity problem in large displacement and small perturbation

Céline Grandmont; Yvon Maday; Paul Métier

C. R. Math (2002)