Comptes Rendus
Stable schemes for second-moment turbulent models for incompressible flows
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 337-353.

A stable scheme is proposed in this paper in order to obtain approximate solutions of second-moment turbulent models for incompressible flows with or without thermal transport equation. The analysis of the convective terms, which includes the solution of the associated Riemann problem, enables to propose a standard projection scheme, and to get rid of spurious oscillations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.202
Mots clés : second-moment turbulent closure, incompressible turbulent flows, hyperbolic systems, Riemann problem, numerical scheme
Martin Ferrand 1 ; Jean-Marc Hérard 1, 2 ; Thomas Norddine 1 ; Simon Ruget 3

1 CEREA, EDF R&D, École des Ponts, Chatou, France
2 I2M, Marseille, France
3 École des Ponts, Champs-sur-Marne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G2_337_0,
     author = {Martin Ferrand and Jean-Marc H\'erard and Thomas Norddine and Simon Ruget},
     title = {Stable schemes for second-moment turbulent models for incompressible flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {337--353},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.202},
     language = {en},
}
TY  - JOUR
AU  - Martin Ferrand
AU  - Jean-Marc Hérard
AU  - Thomas Norddine
AU  - Simon Ruget
TI  - Stable schemes for second-moment turbulent models for incompressible flows
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 337
EP  - 353
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.202
LA  - en
ID  - CRMECA_2023__351_G2_337_0
ER  - 
%0 Journal Article
%A Martin Ferrand
%A Jean-Marc Hérard
%A Thomas Norddine
%A Simon Ruget
%T Stable schemes for second-moment turbulent models for incompressible flows
%J Comptes Rendus. Mécanique
%D 2023
%P 337-353
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.202
%G en
%F CRMECA_2023__351_G2_337_0
Martin Ferrand; Jean-Marc Hérard; Thomas Norddine; Simon Ruget. Stable schemes for second-moment turbulent models for incompressible flows. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 337-353. doi : 10.5802/crmeca.202. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.202/

[1] S. B. Pope Turbulent flows, Cambridge University Press, 2000 | DOI | Zbl

[2] R. Manceau Recent progress in the development of the Elliptic Blending Reynolds-stress model, Int. J. Heat Fluid Flow, Volume 51 (2015), pp. 195-220 | DOI

[3] P. G. Le Floch Shock waves for nonlinear hyperbolic systems in nonconservative form, IMA J. Appl. Math. (1989) (https://conservancy.umn.edu/bitstream/handle/11299/5107/593.pdf)

[4] G. Dal Maso; P. G. Lefloch; F. Murat Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 483-548 | MR | Zbl

[5] M. J. Castro; P. G. LeFloch; M. L. Muñoz-Ruiz; C. Parés Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes, J. Comput. Phys., Volume 227 (2008) no. 17, pp. 8107-8129 | DOI | MR | Zbl

[6] M. Dumbser; D. S. Balsara A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., Volume 304 (2016), pp. 275-319 | DOI | MR | Zbl

[7] G. Brun; J.-M. Hérard; D. Jeandel; M. Uhlmann An approximate Roe-type Riemann solver for a class of realizable second order closures, Int. J. Comput. Fluid Dyn., Volume 13 (2000) no. 3, pp. 223-249 | DOI | MR | Zbl

[8] N. Ben Nasr; G. A. Gerolymos; I. Vallet Low-diffusion approximate Riemann solvers for Reynolds-stress transport, J. Comput. Phys., Volume 268 (2014), pp. 186-235 | DOI | MR | Zbl

[9] B. Audebert Contribution à l’analyse des modèles aux tensions de Reynolds pour l’interaction choc turbulence, Ph. D. Thesis, Université Pierre et Marie Curie Paris VI, Paris, France (2006) (00850928v1)

[10] B. Audebert; F. Coquel Structural stability of shock solutions of hyperbolic systems in nonconservation form via kinetic relations, Hyperbolic Problems: Theory, Numerics, Applications, Springer, 2008, pp. 397-405 | DOI | Zbl

[11] A. Bhole; B. Nkonga; S. Gavrilyuk; K. Ivanova Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow, J. Comput. Phys., Volume 392 (2019), pp. 205-226 | DOI | MR | Zbl

[12] S. L. Gavrilyuk; H. Gouin Variational formulation for models of shear shallow water flows and ideal turbulence, Int. J. Non-Linear Mech., Volume 119 (2020), 103312 | DOI

[13] B. Nkonga; P. Chandrashekar Exact solution for Riemann problems of the shear shallow water model, ESAIM, Math. Model. Numer. Anal., Volume 56 (2022) no. 4, pp. 1115-1150 | DOI | MR | Zbl

[14] P. J. Richards; S. E. Norris Appropriate boundary conditions for computational wind engineering models revisited, J. Wind. Eng. Ind. Aerodyn., Volume 99 (2011) no. 4, pp. 257-266 | DOI

[15] J. L. Lumley Computational modeling of turbulent flows (Advances in Applied Mechanics), Volume 18, Elsevier, 1979, pp. 123-176 | DOI | Zbl

[16] J.-M. Hérard Modèles au second ordre réalisables non dégénérés pour les écoulements turbulents incompressibles, C. R. Méc. Acad. Sci. Paris, Volume 322 (1996) no. 5, pp. 371-377 | Zbl

[17] R. Temam Navier–Stokes equations: theory and numerical analysis, AMS Chelsea Publishing, 343, American Mathematical Society, 2001 | Zbl

[18] A. J. Chorin Numerical solution of the Navier-Stokes equations, Math. Comput., Volume 22 (1968) no. 104, pp. 745-762 | DOI | MR | Zbl

[19] J. B. Bell; P. Colella; H. M. Glaz A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 85 (1989) no. 2, pp. 257-283 | DOI | MR | Zbl

[20] J.-M. Hérard Basic analysis of some second moment closures part I: Incompressible isothermal turbulent flows, Theor. Comput. Fluid Dyn., Volume 6 (1994) no. 4, pp. 213-233 | DOI | Zbl

[21] U. Schumann Realizability of Reynolds stress turbulence models, Phys. Fluids, Volume 20 (1977) no. 5, pp. 721-725 | DOI | Zbl

[22] J.-M. Hérard Basic analysis of some second moment closures part II : incompressible turbulent flows including buoyant effects (1994) (preprint,hal-02007060v1)

[23] J. Smoller Shock waves and reaction—diffusion equations, Grundlehren der Mathematischen Wissenschaften, 258, Springer, 1994 | DOI | Zbl

[24] V. V. Rusanov The calculation of the interaction of non-stationary shock waves with barriers, Zh. Vychisl. Mat. Mat. Fiz., Volume 1 (1961) no. 2, pp. 267-279 | DOI | MR

[25] EDF code_saturne software, 2023 (http://www.code-saturne.org)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Closure laws for a two-fluid two-pressure model

Frédéric Coquel; Thierry Gallouët; Jean-Marc Hérard; ...

C. R. Math (2002)


A simple parameter-free entropy correction for approximate Riemann solvers

Philippe Helluy; Jean-Marc Hérard; Hélène Mathis; ...

C. R. Méca (2010)


A hyperbolic three-phase flow model

Jean-Marc Hérard

C. R. Math (2006)