A stable scheme is proposed in this paper in order to obtain approximate solutions of second-moment turbulent models for incompressible flows with or without thermal transport equation. The analysis of the convective terms, which includes the solution of the associated Riemann problem, enables to propose a standard projection scheme, and to get rid of spurious oscillations.
Revised:
Accepted:
Published online:
Martin Ferrand 1; Jean-Marc Hérard 1, 2; Thomas Norddine 1; Simon Ruget 3
@article{CRMECA_2023__351_G2_337_0, author = {Martin Ferrand and Jean-Marc H\'erard and Thomas Norddine and Simon Ruget}, title = {Stable schemes for second-moment turbulent models for incompressible flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {337--353}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.202}, language = {en}, }
TY - JOUR AU - Martin Ferrand AU - Jean-Marc Hérard AU - Thomas Norddine AU - Simon Ruget TI - Stable schemes for second-moment turbulent models for incompressible flows JO - Comptes Rendus. Mécanique PY - 2023 SP - 337 EP - 353 VL - 351 PB - Académie des sciences, Paris DO - 10.5802/crmeca.202 LA - en ID - CRMECA_2023__351_G2_337_0 ER -
%0 Journal Article %A Martin Ferrand %A Jean-Marc Hérard %A Thomas Norddine %A Simon Ruget %T Stable schemes for second-moment turbulent models for incompressible flows %J Comptes Rendus. Mécanique %D 2023 %P 337-353 %V 351 %I Académie des sciences, Paris %R 10.5802/crmeca.202 %G en %F CRMECA_2023__351_G2_337_0
Martin Ferrand; Jean-Marc Hérard; Thomas Norddine; Simon Ruget. Stable schemes for second-moment turbulent models for incompressible flows. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 337-353. doi : 10.5802/crmeca.202. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.202/
[1] Turbulent flows, Cambridge University Press, 2000 | DOI | Zbl
[2] Recent progress in the development of the Elliptic Blending Reynolds-stress model, Int. J. Heat Fluid Flow, Volume 51 (2015), pp. 195-220 | DOI
[3] Shock waves for nonlinear hyperbolic systems in nonconservative form, IMA J. Appl. Math. (1989) (https://conservancy.umn.edu/bitstream/handle/11299/5107/593.pdf)
[4] Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 483-548 | MR | Zbl
[5] Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes, J. Comput. Phys., Volume 227 (2008) no. 17, pp. 8107-8129 | DOI | MR | Zbl
[6] A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., Volume 304 (2016), pp. 275-319 | DOI | MR | Zbl
[7] An approximate Roe-type Riemann solver for a class of realizable second order closures, Int. J. Comput. Fluid Dyn., Volume 13 (2000) no. 3, pp. 223-249 | DOI | MR | Zbl
[8] Low-diffusion approximate Riemann solvers for Reynolds-stress transport, J. Comput. Phys., Volume 268 (2014), pp. 186-235 | DOI | MR | Zbl
[9] Contribution à l’analyse des modèles aux tensions de Reynolds pour l’interaction choc turbulence, Ph. D. Thesis, Université Pierre et Marie Curie Paris VI, Paris, France (2006) (00850928v1)
[10] Structural stability of shock solutions of hyperbolic systems in nonconservation form via kinetic relations, Hyperbolic Problems: Theory, Numerics, Applications, Springer, 2008, pp. 397-405 | DOI | Zbl
[11] Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow, J. Comput. Phys., Volume 392 (2019), pp. 205-226 | DOI | MR | Zbl
[12] Variational formulation for models of shear shallow water flows and ideal turbulence, Int. J. Non-Linear Mech., Volume 119 (2020), 103312 | DOI
[13] Exact solution for Riemann problems of the shear shallow water model, ESAIM, Math. Model. Numer. Anal., Volume 56 (2022) no. 4, pp. 1115-1150 | DOI | MR | Zbl
[14] Appropriate boundary conditions for computational wind engineering models revisited, J. Wind. Eng. Ind. Aerodyn., Volume 99 (2011) no. 4, pp. 257-266 | DOI
[15] Computational modeling of turbulent flows (Advances in Applied Mechanics), Volume 18, Elsevier, 1979, pp. 123-176 | DOI | Zbl
[16] Modèles au second ordre réalisables non dégénérés pour les écoulements turbulents incompressibles, C. R. Méc. Acad. Sci. Paris, Volume 322 (1996) no. 5, pp. 371-377 | Zbl
[18] Numerical solution of the Navier-Stokes equations, Math. Comput., Volume 22 (1968) no. 104, pp. 745-762 | DOI | MR | Zbl
[19] A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 85 (1989) no. 2, pp. 257-283 | DOI | MR | Zbl
[20] Basic analysis of some second moment closures part I: Incompressible isothermal turbulent flows, Theor. Comput. Fluid Dyn., Volume 6 (1994) no. 4, pp. 213-233 | DOI | Zbl
[21] Realizability of Reynolds stress turbulence models, Phys. Fluids, Volume 20 (1977) no. 5, pp. 721-725 | DOI | Zbl
[22] Basic analysis of some second moment closures part II : incompressible turbulent flows including buoyant effects (1994) (preprint,hal-02007060v1)
[23] Shock waves and reaction—diffusion equations, Grundlehren der Mathematischen Wissenschaften, 258, Springer, 1994 | DOI | Zbl
[24] The calculation of the interaction of non-stationary shock waves with barriers, Zh. Vychisl. Mat. Mat. Fiz., Volume 1 (1961) no. 2, pp. 267-279 | DOI | MR
[25] code_saturne software, 2023 (http://www.code-saturne.org)
Cited by Sources:
Comments - Policy