Je rappelle comment une expérience réalisée par Yves Couder et son groupe a motivé des travaux théoriques qui ont montré que les modes de phase d’une structure cellulaire engendrée par instabilité peuvent affecter la nature des instabilités secondaires de cette structure, à savoir, le caractère propagatif ou non de l’instabilité secondaire et sa sous-criticalité. Je discute ensuite la sous-criticalité résultant du couplage avec les modes de phase sur d’autres exemples tels que la transition de Peierls en physique de la matière condensée.
Neutral modes related to spontaneous broken symmetries at the onset of a pattern-forming instability can strongly modify the nature of secondary instabilities of the pattern. In particular these neutral modes can change the order of the secondary transition making it first order or subcritical in the language of bifurcation theory. We first discuss this phenomenon in the context of the drift bifurcation from stationary to traveling patterns. We then consider patterns that undergo a spatial period-doubling bifurcation like the Peierls transition in solid state physics.
Stéphan Fauve 1
@article{CRMECA_2020__348_6-7_475_0, author = {St\'ephan Fauve}, title = {Effect of neutral modes on the order of a transition}, journal = {Comptes Rendus. M\'ecanique}, pages = {475--487}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.21}, language = {en}, }
Stéphan Fauve. Effect of neutral modes on the order of a transition. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 475-487. doi : 10.5802/crmeca.21. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.21/
[1] On the forms and states assumed by fluids in contact with vibrating elastic surfaces, Phil. Trans. R. Soc. Lond., Volume 52 (1831), pp. 319-340
[2] Hydrokinetic solutions and observations, Phil. Mag., Volume 42 (1871), pp. 362-377 | DOI
[3] Etude expérimentale du mouvement des liquides propageant la chaleur par convection. Régime permanent: tourbillons cellulaires, C. R. Acad. Sci. Paris, Volume 130 (1900), pp. 1004-1007
[4] Mouvements tourbillonnaires à structure cellulaire. Etude optique de la surface libre, C. R. Acad. Sci. Paris, Volume 130 (1900), pp. 1065-1068 | Zbl
[5] Structure quasicristalline engendrée par instabilité paramètrique, C. R. Acad. Sci. Paris, Ser. II, Volume 315 (1992), pp. 417-420
[6] Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148 | DOI | MR
[7] Pattern forming instabilities, Hydrodynamics and Nonlinear Instabilities (C. Godrèche; P. Manneville, eds.), Cambridge University Press, Cambridge, 1998, pp. 387-491 | DOI
[8] Dynamical regimes of directional viscous fingering: spatiotemporal chaos and waves propagation, Phys. Rev. Lett., Volume 64 (1990), pp. 184-187 | DOI
[9] Traveling waves and chaos in convection in binary fluid mixtures, Phys. Rev. Lett., Volume 55 (1985), pp. 496-499 | DOI
[10] Pattern formation in the flow between two horizontal coaxial cylinders with a partially filled gap, Phys. Rev. A, Volume 38 (1988), pp. 4752-4760 | DOI
[11] Solitary modes and the eckhaus instability in directional solidification, Phys. Rev. Lett., Volume 61 (1988), pp. 2574-2777 | DOI
[12] Solitary tilt waves in thin lamellar eutectics, Europhys. Lett., Volume 9 (1989), pp. 779-784 | DOI
[13] Oscillatory phase modulation of parametrically forced surface waves, Europhys. Lett., Volume 10 (1989), pp. 309-315 | DOI
[14] Investigating space-time chaos in faraday instability by means of the fluctuations of the driving acceleration, Europhys. Lett., Volume 15 (1991), pp. 23-28 | DOI
[15] Parity-breaking transitions of modulated patterns in hydrodynamic systems, Phys. Rev. Lett., Volume 63 (1989), pp. 1954-1957 | DOI
[16] Propagative phase dynamics in temporally intermittent systems, Europhys. Lett., Volume 4 (1987), pp. 1017-1022 | DOI
[17] Bifurcations of a planar parallel flow with Kolmogorov forcing, Phys. Rev. E (2020) arXiv:2004.12418 (submitted)
[18] Successive bifurcations in directional viscous fingering, Phys. Rev. E, Volume 47 (1993), pp. 1727-1738
[19] Comment on “Parity-breaking transitions of modulated patterns in hydrodynamic systems”, Phys. Rev. Lett., Volume 385, p. 1990
[20] Drift instabilities of cellular patterns, J. Physique II, Volume 1 (1991), pp. 311-322 | DOI
[21] The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance, J. Fluid Mech. (1988), pp. 301-335 (and references therein) | DOI | Zbl
[22] Symmetry-breaking bifurcations in one-dimensional excitable media, Phys. Rev. A, Volume 46 (1992), pp. 5054-5062 | DOI
[23] The 1:2 mode interaction in exactly counter-rotating von Karman swirling flow, J. Fluid Mech., Volume 477 (1988), pp. 51-88 | Zbl
[24] Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, Volume 29 (1988), pp. 257-282 (and references therein) | DOI | MR | Zbl
[25] New type of complex dynamics in the 1:2 spatial resonance, Physica D, Volume 159 (2001), pp. 125-154 | MR | Zbl
[26] Phase dynamics near a parity breaking instability, Phys. Rev. E, Volume 49 (1994), pp. R3576-3579 | DOI
[27] Wave-number selection and parity-breaking bifurcation in directional viscous fingering, Phys. Rev. E, Volume 58 (1998), pp. 565-574
[28] Resonant interactions and traveling-solidification cells, Phys. Rev. A, Volume 43 (1991), pp. 1122-1125 | DOI
[29] Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Vol. 42, Springer Verlag, New York, 1983
[30] Propagative phase dynamics for systems with galilean invariance, Phys. Rev. Lett., Volume 55 (1985), pp. 2857-2860 | DOI
[31] Instabilities of one-dimensional cellular patterns, Phys. Rev. Lett., Volume 64 (1990), pp. 866-869 | DOI | MR | Zbl
[32] Nonlinear oscillatory convection: a quantitative phase dynamics approach, Physica D, Volume 29 (1987), pp. 202-214 | MR | Zbl
[33] Parity-breaking and Hopf bifurcations in axisymmetric Taylor vortex flow, Phys. Rev. A, Volume 45 (1992), pp. 8605-8610 | DOI
[34] On the phenomenology of tilted domains in lamellar eutectic growth, J. Physique I, Volume 2 (1992), pp. 281-290
[35] Nonuniform broken-parity waves and the Eckhaus instability, Phys. Rev. E, Volume 49 (1994), pp. 2119-2129
[36] More Surprises in Theoretical Physics, Princeton University Press, Princeton, 1991 | MR
[37] Subcriticality of the zigzag transition: a nonlinear bifurcation analysis, Phys. Rev. E, Volume 91 (2015) (032917) | DOI | MR
[38] Hysteresis proves that the In/Si(111) (82) to (41) phase transition is first-order, Phys. Rev. B, Volume 89 (2014) 121107(R) | DOI
[39] Electrical conduction and metal-insulator transition of indium nanowires on Si(111), Phys. Rev. B, Volume 95 (2017) (195409) | DOI
Cité par Sources :
Commentaires - Politique