This paper presents a method derived from Whitham’s variational formulation of the problem of interfacial capillary–gravity short-crested waves. It is developed for the resolution of the problem of waves generated by obliquely reflecting interfacial waves from a vertical wall. In essence, Whitham’s method is not changed, but computations are performed and arranged to produce a method that has been applied to a number of cases demonstrating the effectiveness and the flexibility of the approach. The performance of the method is illustrated in several examples including the case of harmonic resonance.
Cet article présente une méthode dérivée de la formulation variationnelle de Whitham du problème des ondes interfaciales à courte crête de gravité–capillarité. Elle est développée pour la résolution du problème des ondes générées par la réflexion oblique des ondes interfaciales sur une paroi verticale. La méthode de Whitham n’est pas modifiée, mais des calculs sont effectués et organisés pour produire une méthode qui a été appliquée à un certain nombre de cas démontrant l’efficacité et la flexibilité de l’approche. La performance de la méthode est illustrée par plusieurs exemples, y compris le cas de la résonance harmonique.
Accepted:
Revised after acceptance:
Published online:
Mots-clés : Ondes à courtes crêtes interfaciales, Gravité, Capillarité, Épaisseurs arbitraires, Résonance
Dalila Boughazi 1, 2; Mohammed Debiane 2; Nabil Allalou 3
@article{CRMECA_2023__351_G2_315_0, author = {Dalila Boughazi and Mohammed Debiane and Nabil Allalou}, title = {Interfacial capillary{\textendash}gravity short-crested waves}, journal = {Comptes Rendus. M\'ecanique}, pages = {315--334}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.221}, language = {en}, }
Dalila Boughazi; Mohammed Debiane; Nabil Allalou. Interfacial capillary–gravity short-crested waves. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 315-334. doi : 10.5802/crmeca.221. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.221/
[1] On the theory of short–crested oscillatory waves. Gravity waves, U.S. Natl. Bur. Stand. Circ., Volume 521 (1952), pp. 187-200 | MR
[2] Third order approximation to short-crested waves, J. Fluid Mech., Volume 90 (1979), pp. 179-196 | DOI | Zbl
[3] Highly nonlinear short-crested water waves, J. Fluid Mech., Volume 135 (1983), pp. 323-335 | DOI | MR | Zbl
[4] Fourth order approximation of short-crested waves, C. R. Acad. Sci. Paris, Sér. II, Volume 316 (1993), pp. 1193-1200 | Zbl
[5] On short-crested waves: experimental and analytical investigations, Eur. J. Mech. B/Fluids, Volume 18 (1999), pp. 889-930 | DOI | MR | Zbl
[6] Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., Volume 32 (2000), pp. 323-359 | DOI | MR | Zbl
[7] Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B/Fluids, Volume 21 (2002), pp. 615-641 | DOI | MR | Zbl
[8] The calculation of nonlinear short-crested gravity waves, Phys. Fluids, Volume 26 (1983), pp. 2388-2392 | DOI | Zbl
[9] Notes on short-crested waves in deep water, J. Phys. Soc. Jpn., Volume 65 (1996), pp. 2841-2845 | DOI
[10] Almost limiting short-crested gravity waves in deep water, J. Fluid Mech., Volume 646 (2010), pp. 481-503 | DOI | MR | Zbl
[11] Calculation of resonant short-crested waves in deep water, Eur. J. Mech. B/Fluids, Volume 21 (2009), pp. 1-12 | Zbl
[12] Three-dimensional periodic interfacial gravity waves: Analytical and numerical results, Eur. J. Mech. B/Fluids, Volume 30 (2011), pp. 371-386 | DOI | MR | Zbl
[13] Numerical simulation of plane and spatial nonlinear stationary waves in a two-layer fluid of arbitrary depth, Fluid Dyn., Volume 43 (2008), pp. 118-124 | DOI | Zbl
[14] Evolutionary equation for weakly nonlinear waves in a two-layer fluid with slightly sloping bottom and cover, Prikl. Mekh. Tekhn. Fiz., Volume 40 (1999), pp. 62-72 | Zbl
[15] Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974
[16] On ripples, Philos. Mag., Volume 29 (1915), pp. 688-700 | DOI | Zbl
[17] Integrable models of waves in shallow water, Probab. Geom. Integr. Syst., Volume 55 (2007), pp. 345-371
[18] Progressive waves with persistent two-dimensional surface patterns in deep water, J. Fluid Mech., Volume 532 (2005), pp. 1-52 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy