Comptes Rendus
Article de recherche
Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration
[Dynamique des poutres sandwich CNTRC inclinées sous une masse en mouvement avec influence de l’agglomération des CNT]
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 373-390.

La dynamique des poutres composites inclinées renforcées par des nanotubes de carbone (NTC) sous une masse en mouvement avec l’influence de l’agglomération des NTC est étudiée. Les poutres sont composées d’un noyau homogène et de deux couches composites frontales dont les propriétés effectives sont estimées par l’approche Eshelby–Mori–Tanaka. Une nouvelle formulation par éléments finis est formulée et utilisée pour établir l’équation du mouvement. La réponse dynamique est calculée pour une poutre simplement supportée par la méthode de Newmark. Les résultats révèlent le rôle important de l’agglomération des NTC sur la réponse dynamique. Les effets de la vitesse de la masse, de l’angle d’inclinaison et des paramètres d’agglomération sur le comportement dynamique sont étudiés en détail.

Dynamics of inclined carbon nanotube (CNT) reinforced composite beams under a moving mass with influence of CNT agglomeration is studied. The beams compose of a homogeneous core and two composite face layers with effective properties being estimated by Eshelby–Mori–Tanaka approach. A novel finite element formulation is formulated and used to establish the equation of motion. Dynamic response is computed for a simply supported beam by Newmark method. The result reveals the important role of the CNT agglomeration on the dynamic response. The effects of the mass velocity, inclined angle and agglomeration parameters on the dynamic behavior are investigated in detail.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.226
Keywords: CNT, Inclined sandwich beam, Moving mass, Trigonometric shear deformation theory, Dynamic analysis
Mot clés : NTC, Poutre sandwich inclinée, Masse mobile, Théorie trigonométrique de la déformation par cisaillement, Analyse dynamique
Thi Thom Tran 1 ; Dinh Kien Nguyen 1, 2

1 Institute of Mechanics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
2 VNU, University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G2_373_0,
     author = {Thi Thom Tran and Dinh Kien Nguyen},
     title = {Dynamics of inclined {CNTRC} sandwich beams under a moving mass with influence of {CNT} agglomeration},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {373--390},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.226},
     language = {en},
}
TY  - JOUR
AU  - Thi Thom Tran
AU  - Dinh Kien Nguyen
TI  - Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 373
EP  - 390
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.226
LA  - en
ID  - CRMECA_2023__351_G2_373_0
ER  - 
%0 Journal Article
%A Thi Thom Tran
%A Dinh Kien Nguyen
%T Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration
%J Comptes Rendus. Mécanique
%D 2023
%P 373-390
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.226
%G en
%F CRMECA_2023__351_G2_373_0
Thi Thom Tran; Dinh Kien Nguyen. Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 373-390. doi : 10.5802/crmeca.226. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.226/

[1] S. Iijima Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58 | DOI

[2] L. L. Ke; J. Yang; S. Kitipornchai Nonlinear free vibration of functionally graded carbon nanotubereinforced composite beams, Compos. Struct., Volume 92 (2010) no. 3, pp. 676-683

[3] L. L. Ke; J. Yang; S. Kitipornchai Dynamic stability of functionally graded carbon nanotube reinforced composite beams, Mech. Adv. Mater. Struct., Volume 20 (2013) no. 1, pp. 28-37

[4] M. H. Yas; N. Samadi Free vibrations and buckling analysis of carbon nanotube reinforced composite Timoshenko beams on elastic foundation, Int. J. Pressure Vessels Pip., Volume 98 (2012), pp. 119-128 | DOI

[5] H.-S. Shen; Y. Xiang Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., Volume 56 (2013), pp. 698-708 | DOI

[6] R. Ansari; M. Faghih Shojaei; V. Mohammadi; R. Gholami; F. Sadeghi Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams, Compos. Struct., Volume 113 (2014), pp. 316-327 | DOI

[7] F. Lin; Y. Xiang Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories, Appl. Math. Model., Volume 38 (2014) no. 15–16, pp. 3741-3754 | DOI | MR | Zbl

[8] H. L. Wu; S. Kitipornchai Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dyn., Volume 15 (2015) no. 7, 1540011 | DOI | MR | Zbl

[9] H. L. Wu; J. Yang; S. Kitipornchai Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections, Compos. Part B: Eng., Volume 90 (2016), pp. 86-96 | DOI

[10] F. Ebrahimi; N. Farazmandnia Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory, Mech. Adv. Mater. Struct., Volume 24 (2017) no. 10, pp. 820-829 | DOI

[11] A. Mohseni; M. Shakouri Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation, Proc. Inst. Mech. Eng. L, Volume 233 (2019) no. 12, pp. 2478-2489 | DOI

[12] Ö. Civalek; Ş. D. Akbaş; B. Akgöz; S. Dastjerdi Forced vibration analysis of composite beams reinforced by carbon nanotubes, Nanomaterials, Volume 11 (2021) no. 3, pp. 571-586 | DOI

[13] R. I. Rubel; Md. H. Ali; Md. A. Jafor; Md. M. Alam Carbon nanotubes agglomeration in reinforced composites: a review, AIMS Mater. Sci., Volume 6 (2019) no. 5, pp. 756-780 | DOI

[14] D. L. Shi; X. Q. Feng; Y. Y. Huang; K. C. Hwang; H. Gao The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites, J. Eng. Mater. Technol., Volume 126 (2004) no. 3, pp. 250-257 | DOI

[15] M. Heshmati; M. H. Yas Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby–Mori–Tanaka approach, J. Mech. Sci. Technol., Volume 27 (2013), pp. 3403-3408 | DOI

[16] M. Nejati; M. M. Najafizadehand; A. Eslampanah Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load, Int. J. Appl. Mech., Volume 8 (2016) no. 1, 1650008 | DOI

[17] S. Kamarian; M. Shakeri; M. H. Yas; M. Bodaghi; A. Pourasghar Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs, J. Sandwich Struct. Mater., Volume 17 (2015) no. 6, pp. 632-665 | DOI

[18] S. Kamarian; M. Bodaghi; A. Pourasghar; S. Talebi Vibrational behavior of non-uniform piezoelectric sandwich beams made of CNT-reinforced polymer nanocomposite by considering the agglomeration effect of CNTs, Polym. Compos., Volume 38 (2017) no. S1, p. E553-E562 | DOI

[19] J. Pan; L. Bian Influence of agglomeration parameters on carbon nanotube composites, Acta Mech., Volume 228 (2017), pp. 2207-2217 | DOI

[20] F. Kiani; Y. Ariaseresht; A. Niroumand; H. Afshari Thermo-mechanical buckling analysis of thick beams reinforced with agglomerated CNTs with temperature-dependent thermo-mechanical properties under a nonuniform thermal loading, Mech. Des. Struct. Mach. (2022) | DOI

[21] X. G. Yue; S. Sahmani; H. Luo; B. Safaei Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams, Archiv. Civ. Mech. Eng., Volume 23 (2023) no. 1, 21 | DOI

[22] J. J. Wu Dynamic analysis of an inclined beam due to moving loads, J. Sound Vib., Volume 288 (2005) no. 1–2, pp. 107-131 | Zbl

[23] E. Bahmyari; S. R. Mohebpour; P. Malekzadeh Vibration analysis of inclined laminated composite beams under moving distributed masses, Shock Vib., Volume 2014 (2014), 750916 | DOI

[24] A. Mamandi; M. H. Kargarnovin; D. Younesian Nonlinear dynamics of an inclined beam subjected to a moving load, Nonlinear Dynam., Volume 60 (2010), pp. 277-293 | DOI | Zbl

[25] A. Mamandi; M. H. Kargarnovin Dynamic analysis of an inclined Timoshenko beam traveled by successive moving masses/forces with inclusion of geometric nonlinearities, Acta Mech., Volume 218 (2011), pp. 9-29 | DOI | Zbl

[26] D. K. Nguyen; T. T. Tran; V. N. Pham; T. N. A. Le Dynamic analysis of an inclined sandwich beam with bidirectional functionally graded face sheets under a moving mass, Eur. J. Mech. A/Solids, Volume 88 (2021), 104276 | DOI | MR | Zbl

[27] J. R. Zuiker Functionally graded materials: choice of micromechanics model and limitations in property variation, Compos. Eng., Volume 5 (1995) no. 7, pp. 807-819 | DOI

[28] H. Daghigh; V. Daghigh Free vibration of size and temperature-dependent carbon nanotube (CNT)-reinforced composite nanoplates with CNT agglomeration, Polym. Compos., Volume 40 (2019) no. S2, p. E1479-E1494 | DOI

[29] A. J. M. Ferreira; C. M. C. Roque; R. M. N. Jorge Analysis of composite plates by trigonometric shear deformation theory and multiquadrics, Comput. Struct., Volume 83 (2005), pp. 2225-2237 | DOI

[30] M. H. Yas; M. Heshmati Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Appl. Math. Model., Volume 36 (2012), pp. 1371-1394 | DOI | MR | Zbl

[31] M. Şimşek Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Compos. Struct., Volume 92 (2010), pp. 904-917 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On species separation in n-component mixture under microgravity

Mehdi Mojtabi; Marie-Catherine Charrier-Mojtabi; Abdelkader Mojtabi

C. R. Méca (2023)


FSI—vibrations of immersed cylinders. Simulations with the engineering open-source code TrioCFD. Test cases and experimental comparisons

Domenico Panunzio; Maria-Adela Puscas; Romain Lagrange

C. R. Méca (2022)


Risk-averse estimates of effective properties in heterogeneous elasticity

Jeremy Bleyer

C. R. Méca (2023)