Dynamics of inclined carbon nanotube (CNT) reinforced composite beams under a moving mass with influence of CNT agglomeration is studied. The beams compose of a homogeneous core and two composite face layers with effective properties being estimated by Eshelby–Mori–Tanaka approach. A novel finite element formulation is formulated and used to establish the equation of motion. Dynamic response is computed for a simply supported beam by Newmark method. The result reveals the important role of the CNT agglomeration on the dynamic response. The effects of the mass velocity, inclined angle and agglomeration parameters on the dynamic behavior are investigated in detail.
La dynamique des poutres composites inclinées renforcées par des nanotubes de carbone (NTC) sous une masse en mouvement avec l’influence de l’agglomération des NTC est étudiée. Les poutres sont composées d’un noyau homogène et de deux couches composites frontales dont les propriétés effectives sont estimées par l’approche Eshelby–Mori–Tanaka. Une nouvelle formulation par éléments finis est formulée et utilisée pour établir l’équation du mouvement. La réponse dynamique est calculée pour une poutre simplement supportée par la méthode de Newmark. Les résultats révèlent le rôle important de l’agglomération des NTC sur la réponse dynamique. Les effets de la vitesse de la masse, de l’angle d’inclinaison et des paramètres d’agglomération sur le comportement dynamique sont étudiés en détail.
Revised:
Accepted:
Published online:
Mots-clés : NTC, Poutre sandwich inclinée, Masse mobile, Théorie trigonométrique de la déformation par cisaillement, Analyse dynamique
Thi Thom Tran 1; Dinh Kien Nguyen 1, 2
@article{CRMECA_2023__351_G2_373_0, author = {Thi Thom Tran and Dinh Kien Nguyen}, title = {Dynamics of inclined {CNTRC} sandwich beams under a moving mass with influence of {CNT} agglomeration}, journal = {Comptes Rendus. M\'ecanique}, pages = {373--390}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.226}, language = {en}, }
TY - JOUR AU - Thi Thom Tran AU - Dinh Kien Nguyen TI - Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration JO - Comptes Rendus. Mécanique PY - 2023 SP - 373 EP - 390 VL - 351 PB - Académie des sciences, Paris DO - 10.5802/crmeca.226 LA - en ID - CRMECA_2023__351_G2_373_0 ER -
%0 Journal Article %A Thi Thom Tran %A Dinh Kien Nguyen %T Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration %J Comptes Rendus. Mécanique %D 2023 %P 373-390 %V 351 %I Académie des sciences, Paris %R 10.5802/crmeca.226 %G en %F CRMECA_2023__351_G2_373_0
Thi Thom Tran; Dinh Kien Nguyen. Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 373-390. doi : 10.5802/crmeca.226. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.226/
[1] Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58 | DOI
[2] Nonlinear free vibration of functionally graded carbon nanotubereinforced composite beams, Compos. Struct., Volume 92 (2010) no. 3, pp. 676-683
[3] Dynamic stability of functionally graded carbon nanotube reinforced composite beams, Mech. Adv. Mater. Struct., Volume 20 (2013) no. 1, pp. 28-37
[4] Free vibrations and buckling analysis of carbon nanotube reinforced composite Timoshenko beams on elastic foundation, Int. J. Pressure Vessels Pip., Volume 98 (2012), pp. 119-128 | DOI
[5] Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., Volume 56 (2013), pp. 698-708 | DOI
[6] Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams, Compos. Struct., Volume 113 (2014), pp. 316-327 | DOI
[7] Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories, Appl. Math. Model., Volume 38 (2014) no. 15–16, pp. 3741-3754 | DOI | MR | Zbl
[8] Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dyn., Volume 15 (2015) no. 7, 1540011 | DOI | MR | Zbl
[9] Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections, Compos. Part B: Eng., Volume 90 (2016), pp. 86-96 | DOI
[10] Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory, Mech. Adv. Mater. Struct., Volume 24 (2017) no. 10, pp. 820-829 | DOI
[11] Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation, Proc. Inst. Mech. Eng. L, Volume 233 (2019) no. 12, pp. 2478-2489 | DOI
[12] Forced vibration analysis of composite beams reinforced by carbon nanotubes, Nanomaterials, Volume 11 (2021) no. 3, pp. 571-586 | DOI
[13] Carbon nanotubes agglomeration in reinforced composites: a review, AIMS Mater. Sci., Volume 6 (2019) no. 5, pp. 756-780 | DOI
[14] The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites, J. Eng. Mater. Technol., Volume 126 (2004) no. 3, pp. 250-257 | DOI
[15] Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby–Mori–Tanaka approach, J. Mech. Sci. Technol., Volume 27 (2013), pp. 3403-3408 | DOI
[16] Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load, Int. J. Appl. Mech., Volume 8 (2016) no. 1, 1650008 | DOI
[17] Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs, J. Sandwich Struct. Mater., Volume 17 (2015) no. 6, pp. 632-665 | DOI
[18] Vibrational behavior of non-uniform piezoelectric sandwich beams made of CNT-reinforced polymer nanocomposite by considering the agglomeration effect of CNTs, Polym. Compos., Volume 38 (2017) no. S1, p. E553-E562 | DOI
[19] Influence of agglomeration parameters on carbon nanotube composites, Acta Mech., Volume 228 (2017), pp. 2207-2217 | DOI
[20] Thermo-mechanical buckling analysis of thick beams reinforced with agglomerated CNTs with temperature-dependent thermo-mechanical properties under a nonuniform thermal loading, Mech. Des. Struct. Mach. (2022) | DOI
[21] Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams, Archiv. Civ. Mech. Eng., Volume 23 (2023) no. 1, 21 | DOI
[22] Dynamic analysis of an inclined beam due to moving loads, J. Sound Vib., Volume 288 (2005) no. 1–2, pp. 107-131 | Zbl
[23] Vibration analysis of inclined laminated composite beams under moving distributed masses, Shock Vib., Volume 2014 (2014), 750916 | DOI
[24] Nonlinear dynamics of an inclined beam subjected to a moving load, Nonlinear Dynam., Volume 60 (2010), pp. 277-293 | DOI | Zbl
[25] Dynamic analysis of an inclined Timoshenko beam traveled by successive moving masses/forces with inclusion of geometric nonlinearities, Acta Mech., Volume 218 (2011), pp. 9-29 | DOI | Zbl
[26] Dynamic analysis of an inclined sandwich beam with bidirectional functionally graded face sheets under a moving mass, Eur. J. Mech. A/Solids, Volume 88 (2021), 104276 | DOI | MR | Zbl
[27] Functionally graded materials: choice of micromechanics model and limitations in property variation, Compos. Eng., Volume 5 (1995) no. 7, pp. 807-819 | DOI
[28] Free vibration of size and temperature-dependent carbon nanotube (CNT)-reinforced composite nanoplates with CNT agglomeration, Polym. Compos., Volume 40 (2019) no. S2, p. E1479-E1494 | DOI
[29] Analysis of composite plates by trigonometric shear deformation theory and multiquadrics, Comput. Struct., Volume 83 (2005), pp. 2225-2237 | DOI
[30] Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Appl. Math. Model., Volume 36 (2012), pp. 1371-1394 | DOI | MR | Zbl
[31] Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Compos. Struct., Volume 92 (2010), pp. 904-917 | DOI
Cited by Sources:
Comments - Policy