Comptes Rendus
Bouncing drops, memory
Walking droplets, swimming microbes: on memory in physics and life
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 545-554.

Whirling and swerving, a bacterium is swimming in a test tube, foraging for food. On the surface of a vibrating bath, a droplet starts walking. A certain similarity, but mostly dissimilarity, between the physical memory that emerges in Couder’s droplet experiments and the biological memory of the bacterium is noted. It serves as a starting point for a short perspective and speculation on the multilevel, loopy memory of living matter.

Published online:
DOI: 10.5802/crmeca.25
Keywords: Bacteria, Memory, Persister, CRISPR/Cas, Spore

Albert Libchaber 1; Tsvi Tlusty 2, 3

1 Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10021, USA
2 Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Korea
3 Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Albert Libchaber and Tsvi Tlusty},
     title = {Walking droplets, swimming microbes: on~memory in physics and life},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {545--554},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.25},
     language = {en},
AU  - Albert Libchaber
AU  - Tsvi Tlusty
TI  - Walking droplets, swimming microbes: on memory in physics and life
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 545
EP  - 554
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.25
LA  - en
ID  - CRMECA_2020__348_6-7_545_0
ER  - 
%0 Journal Article
%A Albert Libchaber
%A Tsvi Tlusty
%T Walking droplets, swimming microbes: on memory in physics and life
%J Comptes Rendus. Mécanique
%D 2020
%P 545-554
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.25
%G en
%F CRMECA_2020__348_6-7_545_0
Albert Libchaber; Tsvi Tlusty. Walking droplets, swimming microbes: on memory in physics and life. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 545-554. doi : 10.5802/crmeca.25.

[1] M. Proust À la Recherche du Temps Perdu, Gaston Gallimard, Paris, 1923

[2] D. Bohm Wholeness and the Implicate Order, Routledge Classics, London, New York, 2002

[3] V. Bacot; S. Perrard; M. Labousse; Y. Couder; E. Fort Multistable free states of an active particle from a coherent memory dynamics, Phys. Rev. Lett., Volume 122 (2019) (104303) | DOI

[4] Y. Couder; S. Protière; E. Fort; A. Boudaoud Walking and orbiting droplets, Nature, Volume 437 (2005), p. 208-208 | DOI

[5] N. C. Keim; J. D. Paulsen; Z. Zeravcic; S. Sastry; S. R. Nagel Memory formation in matter, Rev. Mod. Phys., Volume 91 (2019) (035002) | MR

[6] H. C. Berg; D. A. Brown Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature, Volume 239 (1972), pp. 500-504 | DOI

[7] J. E. Segall; S. M. Block; H. C. Berg Temporal comparisons in bacterial chemotaxis, Proc. Natl Acad. Sci. USA, Volume 83 (1986), p. 8987 | DOI

[8] A. Celani; M. Vergassola Bacterial strategies for chemotaxis response, Proc. Natl Acad. Sci. USA, Volume 107 (2010), p. 1391 | DOI

[9] U. Frisch Turbulence: the Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, Eng., New York, 1995 | DOI

[10] A. Condon; H. Kirchner; D. Larivière; W. Marshall; V. Noireaux; T. Tlusty; E. Fourmentin Will biologists become computer scientists?, EMBO reports, Volume 19 (2018), e46628 | DOI

[11] R. Bar-Ziv; T. Tlusty; A. Libchaber Protein–DNA computation by stochastic assembly cascade, Proc. Natl Acad. Sci. USA, Volume 99 (2002), pp. 11589-11592 | DOI

[12] J. Monod; J.-P. Changeux; F. Jacob Allosteric proteins and cellular control systems, J. Mol. Biol., Volume 6 (1963), pp. 306-329 | DOI

[13] D. C. Gajdusek; C. J. Gibbs; M. Alpers Experimental transmission of a Kuru-like syndrome to chimpanzees, Nature, Volume 209 (1966), pp. 794-796 | DOI

[14] E. Jablonka; B. Oborny; I. Molnar; E. Kisdi; J. Hofbauer; T. Czaran The adaptive advantage of phenotypic memory in changing environments, Phil. Trans. R. Soc. Lond. B, Volume 350 (1995), pp. 133-141

[15] G. Lambert; E. Kussell Memory and fitness optimization of bacteria under fluctuating environments, PLoS Genet., Volume 10 (2014) no. 9 (e1004556) | DOI

[16] J. Monod The growth of bacterial cultures, Annu. Rev. Microbiol., Volume 3 (1949), pp. 371-394 | DOI

[17] E. Heard; R. A. Martienssen Transgenerational epigenetic inheritance: myths and mechanisms, Cell, Volume 157 (2014), pp. 95-109 | DOI

[18] E. J. Richards Inherited epigenetic variation — revisiting soft inheritance, Nat. Rev. Genet., Volume 7 (2006), pp. 395-401 | DOI

[19] J. Casadesús; R. D’Ari Memory in bacteria and phage, Bioessays, Volume 24 (2002), pp. 512-518 | DOI

[20] E. Maisonneuve; K. Gerdes Molecular mechanisms underlying bacterial persisters, Cell, Volume 157 (2014), pp. 539-548 | DOI

[21] J. Bigger Treatment of staphylococcal infections with penicillin, Lancet, Volume 2 (1944), pp. 497-500 | DOI

[22] N. Balaban; J. Merrin; R. Chait; L. Kowalik; S. Leibler Bacterial persistence as a phenotypic switch, Science, Volume 305 (2004), pp. 1622-1625 | DOI

[23] O. Gefen; N. Balaban The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress, FEMS Microbiol. Rev., Volume 33 (2009), pp. 704-717 | DOI

[24] E. Rotem; A. Loinger; I. Ronin; I. Levin-Reisman; C. Gabay; N. Shoresh; O. Biham; N. Balaban Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence, Proc. Natl Acad. Sci. USA, Volume 107 (2010), pp. 12541-12546 | DOI

[25] F. Mojica; C. Diez-Villasenor; J. Garcia-Martinez; E. Soria Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, J. Mol. Evol., Volume 60 (2005), pp. 174-182 | DOI

[26] A. Bolotin; B. Ouinquis; A. Sorokin; S. Ehrlich Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology, Volume 151 (2005), pp. 2551-2561 | DOI

[27] R. Barrangou; L. Marraffini CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity, Mol. Cell, Volume 54 (2014), pp. 234-244 | DOI

[28] I. S. Povolotskaya; F. A. Kondrashov Sequence space and the ongoing expansion of the protein universe, Nature, Volume 465 (2010), pp. 922-926 | DOI

[29] T. Tlusty; A. Libchaber; J.-P. Eckmann Physical model of the genotype-to-phenotype map of proteins, Phys. Rev. X, Volume 7 (2017) (021037)

[30] T. Tlusty Self-referring DNA and protein: a remark on physical and geometrical aspects, Phil. Trans. R. Soc. A, Volume 374 (2016) (20150070) | DOI

[31] S. Dutta; J.-P. Eckmann; A. Libchaber; T. Tlusty Green function of correlated genes in a minimal mechanical model of protein evolution, Proc. Natl Acad. Sci. USA, Volume 115 (2018), p. E4559-E4568 | DOI

[32] F. Cohn Untersuchungen nuch bacterium, Beiträge zur Biologie der Pflanzen, Volume 3 (1875), pp. 141-207

[33] F. Cohn Die Pflanze. Voträge aus dem Gebiete der Botanik, J. U. Kern (M. Müller), Breslau, 1896

[34] R. H. Vreeland; W. D. Rosenzweig; D. W. Powers Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal, Nature, Volume 407 (2000), pp. 897-900 | DOI

[35] R. Cano; M. Borucki Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber, Science, Volume 268 (1995), pp. 1060-1064 | DOI

[36] J.-W. Veening; E. J. Stewart; T. W. Berngruber; F. Taddei; O. P. Kuipers; L. W. Hamoen Bet-hedging and epigenetic inheritance in bacterial cell development, Proc. Natl Acad. Sci. USA, Volume 105 (2008), pp. 4393-4398 | DOI

[37] F. H. C. Crick The origin of the genetic code, J. Mol. Biol., Volume 38 (1968), pp. 367-379 | DOI

[38] T. Tlusty A colorful origin for the genetic code: Information theory, statistical mechanics and the emergence of molecular codes, Phys. Life Rev., Volume 7 (2010), pp. 362-376 | DOI

[39] S. Osawa; T. H. Jukes; K. Watanabe; A. Muto Recent evidence for evolution of the genetic code, Microbiol. Rev., Volume 56 (1992), pp. 229-264 | DOI

[40] B. G. Barrell; A. T. Bankier; J. Drouin A different genetic code in human mitochondria, Nature, Volume 282 (1979), pp. 189-194 | DOI

[41] A. Weismann Das Keimplasma: eine theorie der Vererbung, Fischer, 1892

[42] J. B. P. A. d. M. d. Lamarck Zoological Philosophy: an Exposition with Regard to the Natural History of Animals, University of Chicago Press, Chicago, 1984

[43] F. H. Crick On protein synthesis, Symp. Soc. Exp. Biol., Volume 1958, pp. 138-163

Cited by Sources:

Comments - Policy