Published online:

DOI:
10.5802/crmeca.26

Keywords:
Nonlinear physics, Fracture, Friction, Earthquakes

Author's affiliations:

Jay Fineberg ^{1}

License: CC-BY 4.0

Copyrights: The authors retain unrestricted copyrights and publishing rights

Jay Fineberg. Ramblings (Memoirs) of a scientist. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 401-422. doi : 10.5802/crmeca.26. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.26/

[1] Monopole pair production in compact U(1), Phys. Lett. B, Volume 158 (1985) no. 2, pp. 135-139 | DOI

[2] Time-dependence of flow patterns near the convective threshold in a cylindrical container, Phys. Rev. Lett., Volume 54 (1985) no. 13, pp. 1373-1376 | DOI

[3] Evolution of turbulence From Rayleigh–Benard instability, Phys. Rev. Lett., Volume 40 (1978) no. 11, pp. 712-716 | DOI

[4] Vortex-front propagation in Rayleigh–Benard convection, Phys. Rev. Lett., Volume 58 (1987) no. 13, pp. 1332-1335 | DOI

[5] Propagating pattern selection, Phys. Rev. Lett., Volume 50 (1983) no. 6, pp. 383-386 | DOI

[6] Multistability and confined traveling-wave patterns in a convecting binary mixture, Phys. Rev. A, Volume 35 (1987) no. 6, pp. 2757-2760 | DOI

[7] Spatially and temporally modulated traveling-wave pattern in convecting binary-mixtures, Phys. Rev. Lett., Volume 61 (1988) no. 7, pp. 838-841 | DOI

[8] How things break, Phys. Today, Volume 49 (1996) no. 9, pp. 24-29 | DOI

[9] Instability in dynamic fracture, Phys. Rev. Lett., Volume 67 (1991) no. 4, pp. 457-460 | DOI

[10] Transition to shear-driven turbulence in Couette–Taylor flow, Phys. Rev. A, Volume 46 (1992) no. 10, pp. 6390-6405 | DOI

[11] Patterns and quasi-patterns in the faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148 | DOI | MR

[12] Dissipative solitary states in driven surface waves, Phys. Rev. Lett., Volume 76 (1996) no. 21, pp. 3959-3962 | DOI

[13] Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | DOI

[14] Localized excitations in a vertically vibrated granular layer, Nature, Volume 382 (1996) no. 6594, pp. 793-796 | DOI

[15] Temporally harmonic oscillons in Newtonian fluids, Phys. Rev. Lett., Volume 85 (2000) no. 4, pp. 756-759 | DOI

[16] Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension, Phys. Rev. Lett., Volume 83 (1999) no. 16, pp. 3190-3193 | DOI

[17] Pattern formation in two-frequency forced parametric waves, Phys. Rev. E, Volume 65 (2002) no. 3, 2A

[18] Necessary conditions for mode interactions in parametrically excited waves, Phys. Rev. Lett., Volume 100 (2008) no. 13 | DOI

[19] Localized instability on the route to disorder in Faraday waves, Phys. Rev. Lett., Volume 104 (2010) no. 18 | DOI

[20] Local crack branching as a mechanism for instability in dynamic fracture, Phys. Rev. Lett., Volume 74 (1995) no. 25, pp. 5096-5099 | DOI

[21] Energy dissipation in dynamic fracture, Phys. Rev. Lett., Volume 76 (1996) no. 12, pp. 2117-2120 | DOI

[22] Crack front waves, J. Mech. Phys. Solids, Volume 46 (1998) no. 3, pp. 467-487 | DOI | MR | Zbl

[23] Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett., Volume 79 (1997) no. 5, pp. 877-880 | DOI

[24] Propagating solitary waves along a rapidly moving crack front, Nature, Volume 410 (2001) no. 6824, pp. 68-71 | DOI

[25] Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones, Nature, Volume 418 (2002) no. 6895, pp. 310-313 | DOI

[26] Shatter cones: Branched, rapid fractures formed by shock impact, J. Geophys. Res.-Solid Earth, Volume 109 (2004) no. B10 | DOI

[27] Universality and hysteretic dynamics in rapid fracture, Phys. Rev. Lett., Volume 94 (2005) no. 22 | DOI

[28] Breakdown of linear elastic fracture mechanics near the tip of a rapid crack, Phys. Rev. Lett., Volume 101 (2008) no. 26 | DOI

[29] Weakly nonlinear theory of dynamic fracture, Phys. Rev. Lett., Volume 101 (2008) no. 26 | DOI

[30] Acquisition of inertia by a moving crack, Phys. Rev. Lett., Volume 104 (2010) no. 11 | DOI

[31] New dynamic equation for cracks, Phys. Rev. Lett., Volume 66 (1991) no. 19, pp. 2484-2487 | DOI | MR | Zbl

[32] The near-tip fields of fast cracks, Science, Volume 327 (2010) no. 5971, pp. 1359-1363 | DOI | MR | Zbl

[33] Dynamics of simple cracks, Annual Review of Condensed Matter Physics, Vol 1 (J. S. Langer, ed.) (Annual Review of Condensed Matter Physics), Volume 1, 2010, pp. 371-395 | DOI

[34] Intrinsic nonlinear scale governs oscillations in rapid fracture, Phys. Rev. Lett., Volume 108 (2012) no. 10 | DOI

[35] The dynamics of rapid fracture: instabilities, nonlinearities and length scales, Rep. Prog. Phys., Volume 77 (2014) no. 4 | DOI | MR

[36] Instability in dynamic fracture and the failure of the classical theory of cracks, Nat. Phys., Volume 13 (2017) no. 12, p. 1186+ | DOI

[37] Origin of the microbranching instability in rapid cracks, Phys. Rev. Lett., Volume 114 (2015) no. 5

[38] Crack front dynamics: the interplay of singular geometry and crack instabilities, Phys. Rev. Lett., Volume 114 (2015) no. 17 | DOI

[39] Nonlinear focusing in dynamic crack fronts and the microbranching transition, Phys. Rev. Lett., Volume 119 (2017) no. 21 | DOI

[40] Topological defects govern crack front motion and facet formation on broken surfaces, Nat. Mater., Volume 17 (2018) no. 2, p. 140+ | DOI

[41] Double-network hydrogels with extremely high mechanical strength, Adv. Mater., Volume 15 (2003) no. 14, p. 1155+ | DOI

[42] How supertough gels break, Phys. Rev. Lett., Volume 121 (2018) no. 13 | DOI

[43] Detachment fronts and the onset of dynamic friction, Nature, Volume 430 (2004) no. 7003, pp. 1005-1009 | DOI

[44] The dynamics of the onset of frictional slip, Science, Volume 330 (2010) no. 6001, pp. 211-214 | DOI

[45] Static friction coefficient is not a material constant, Phys. Rev. Lett., Volume 106 (2011) no. 25 | DOI

[46] Classical shear cracks drive the onset of dry frictional motion, Nature, Volume 509 (2014) no. 7499, p. 205+ | DOI

[47] Brittle fracture theory predicts the equation of motion of frictional rupture fronts, Phys. Rev. Lett., Volume 118 (2017) no. 12 | DOI

[48] Rupture dynamics of heterogeneous frictional interfaces, J. Geophys. Res.-Solid Earth, Volume 123 (2018) no. 5, pp. 3828-3848

[49] Slippery but tough: the rapid fracture of lubricated frictional interfaces, Phys. Rev. Lett., Volume 116 (2016) no. 19

[50] Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion, Nat. Phys., Volume 12 (2016) no. 2, p. 166+

[51] Unstable slippage across a fault that separates elastic media of different elastic constants, J. Mech. Phys. Solids, Volume 11 (1963) no. NB3, pp. 197-204

[52] Unstable slippage across a fault that separates elastic media of different elastic-constants, J. Geophys. Res., Volume 85 (1980) no. NB3, pp. 1455-1461 | DOI

[53] Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int., Volume 173 (2008) no. 2, pp. 674-692 | DOI

[54] Dynamic rupture on a bimaterial interface governed by slip-weakening friction, Geophys. J. Int., Volume 165 (2006) no. 2, pp. 469-484 | DOI

[55] The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction, Nat. Commun., Volume 7 (2016) | DOI

*Cited by Sources: *

Articles of potential interest

Willi H. Hager; Kolumban Hutter; Oscar Castro-Orgaz

C. R. Méca (2020)

Willi H. Hager; Kolumban Hutter; Oscar Castro-Orgaz

C. R. Méca (2020)