Comptes Rendus
Biology and Mechanics
Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 685-692.

The rapid cell growth that is associated with the formation of new lateral organs in the shoot apical meristem was linked to an increase in cell wall elasticity but not viscosity in the plant model Arabidopsis thaliana. To investigate the generality of this puzzling relationship, we explored in seven plant species, covering a wide diversity across land plants, the changes in mechanical properties of the cell walls that occur during organ formation. We show that, despite the considerable variation in cell wall composition among the species tested, a drop in cell wall stiffness systematically accompanied primordia formation. We also observed that meristem activity correlates with cell wall elasticity in three species. Thus it seems that cell wall elasticity and growth rate in the meristem are correlated across the land plants.

Published online:
DOI: 10.5802/crmeca.28
Keywords: Biomechanics, Meristem, Growth, Cell wall, Morphogenesis, AFM
Alexis Peaucelle 1, 2

1 Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
2 Université Paris Diderot, UFR de Physique de Paris 7, Laboratoire MSC, 10 rue Alice Domont et Léonie Duquet, 75205 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2020__348_6-7_685_0,
     author = {Alexis Peaucelle},
     title = {Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {685--692},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.28},
     language = {en},
}
TY  - JOUR
AU  - Alexis Peaucelle
TI  - Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 685
EP  - 692
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.28
LA  - en
ID  - CRMECA_2020__348_6-7_685_0
ER  - 
%0 Journal Article
%A Alexis Peaucelle
%T Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species
%J Comptes Rendus. Mécanique
%D 2020
%P 685-692
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.28
%G en
%F CRMECA_2020__348_6-7_685_0
Alexis Peaucelle. Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 685-692. doi : 10.5802/crmeca.28. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.28/

[1] Y. Couder Initial transitions, order and disorder in phyllotactic patterns: the ontogeny of Helianthus annuus. A case study, Acta Soc. Botan. Polon., Volume 67 (1998) no. 2, pp. 129-150 | DOI

[2] S. Douady; Y. Couder Phyllotaxis as a physical self-organized growth process, Phys. Rev. Lett., Volume 68 (1992) no. 13, pp. 2098-2101 | DOI

[3] S. Douady; Y. Couder Phyllotaxis as a dynamical self organizing process part I: The spiral modes resulting from time-periodic iterations, J. Theor. Biol., Volume 178 (1996a) no. 3, pp. 255-273 | DOI

[4] S. Douady; Y. Couder Phyllotaxis as a dynamical self organizing process part II: The spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns, J. Theor. Biol., Volume 178 (1996b) no. 3, pp. 275-294 | DOI

[5] S. Douady; Y. Couder Phyllotaxis as a dynamical self organizing process part III: The simulation of the transient regimes of ontogeny, J. Theoret. Biol., Volume 178 (1996c) no. 3, pp. 295-312 | DOI

[6] S. Douady; Y. Couder Phyllotaxis as a Self-Organized Growth Process, Growth Patterns in Physical Sciences and Biology (J. M. Garcia-Ruiz; E. Louis; P. Meakin; L. M. Sander, eds.), Springer US, 1993, pp. 341-352 | DOI

[7] A. Peaucelle; Y. Couder Fibonacci spirals in a brown alga [Sargassum muticum (Yendo) Fensholt] and in a land plant [Arabidopsis thaliana (L.) Heynh.]: a case of morphogenetic convergence, Acta Soc. Botan. Polon., Volume 85 (2016) no. 4, pp. 1-15

[8] K. Bainbridge; S. Guyomarc’h; E. Bayer; R. Swarup; M. Bennett; T. Mandel; C. Kuhlemeier Auxin influx carriers stabilize phyllotactic patterning, Genes Develop., Volume 22 (2008) no. 6, pp. 810-823 | DOI

[9] P. B. De Reuille; I. Bohn-Courseau; K. Ljung; H. Morin; N. Carraro; C. Godin; J. Traas Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis, Proc. Natl Acad. Sci. USA, Volume 103 (2006) no. 5, pp. 1627-1632 | DOI

[10] N. Carraro; A. Peaucelle; P. Laufs; J. Traas Cell differentiation and organ initiation at the shoot apical meristem, Plant Mol. Biol., Volume 60 (2006) no. 6 SPEC. ISS., pp. 811-826 | DOI

[11] O. Hamant; M. G. Heisler; H. Jönsson; P. Krupinski; M. Uyttewaal; P. Bokov; F. Corson; P. Sahlin; A. Boudaoud; E. M. Meyerowitz; Y. Couder; J. Traas Developmental patterning by mechanical signals in Arabidopsis, Science, Volume 322 (2008) no. 5908, pp. 1650-1655 | DOI

[12] A. Peaucelle Cell wall expansion: case study of a biomechanical process, Plant Cell Monographs (V. P. Sahi; F. Baluška, eds.), Volume 23, Springer, 2018, pp. 139-154 | DOI

[13] H. Jönsson; M. G. Heisler; B. E. Shapiro; E. M. Meyerowitz; E. Mjolsness An auxin-driven polarized transport model for phyllotaxis, Proc. Natl Acad. Sci. USA, Volume 103 (2006) no. 5, pp. 1633-1638 | DOI

[14] R. S. Smith; S. Guyomarc’h; T. Mandel; D. Reinhardt; C. Kuhlemeier; P. Prusinkiewicz A plausible model of phyllotaxis, Proc. Natl Acad. Sci. USA, Volume 103 (2006) no. 5, pp. 1301-1306 | DOI

[15] A. Peaucelle; S. A. Braybrook; L. Le Guillou; E. Bron; C. Kuhlemeier; H. Höfte Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis, Curr. Biol., Volume 21 (2011) no. 20, pp. 1720-1726 | DOI

[16] A. Andres-Robin; M. C. Reymond; A. Dupire; V. Battu; N. Dubrulle; G. Mouille; V. Lefebvre; J. Pelloux; A. Boudaoud; J. Traas; C. P. Scutt; F. Monéger Evidence for the regulation of gynoecium morphogenesis by ETTIN via cell wall dynamics, Plant Physiol., Volume 178 (2018) no. 3, pp. 1222-1232 | DOI

[17] W. Feng; D. Kita; A. Peaucelle; H. N. Cartwright; V. Doan; Q. Duan; M. C. Liu; J. Maman; L. Steinhorst; I. Schmitz-Thom; R. Yvon; J. Kudla; H. M. Wu; A. Y. Cheung; J. R. Dinneny The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca 2+ signaling, Curr. Biol., Volume 28 (2018) no. 5, pp. 666-675 | DOI

[18] A. Peaucelle; R. Wightman; H. Höfte The control of growth symmetry breaking in the Arabidopsis hypocotyl, Curr. Biol., Volume 25 (2015) no. 13, pp. 1746-1752 | DOI

[19] J. Qi; B. Wu; S. Feng; S. Lü; C. Guan; X. Zhang; D. Qiu; Y. Hu; Y. Zhou; C. Li; M. Long; Y. Jiao Mechanical regulation of organ asymmetry in leaves, Nat. Plant., Volume 3 (2017) no. 9, pp. 724-733 | DOI

[20] F. Zhao; W. Chen; J. Sechet; M. Martin; S. Bovio; C. Lionnet; Y. Long; V. Battu; G. Mouille; F. Monéger; J. Traas Xyloglucans and microtubules synergistically maintain meristem geometry and phyllotaxis, Plant Physiol., Volume 181 (2019) no. 3, pp. 1191-1206 | DOI

[21] R. A. Burton; M. J. Gidley; G. B. Fincher Heterogeneity in the chemistry, structure and function of plant cell walls, Nat. Chem. Biol., Volume 6 (2010) no. 10, pp. 724-732 | DOI

[22] J. U. Fangel; P. Ulvskov; J. P. Knox; M. D. Mikkelsen; J. Harholt; Z. A. Popper; W. G. T. Willats Cell wall evolution and diversity, Front. Plant Sci., Volume 3 (2012) (152) | DOI

[23] R. Ligrone; K. C. Vaughn; K. S. Renzaglia; J. P. Knox; J. G. Duckett Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water-conducting cells, New Phytol., Volume 156 (2002) no. 3, pp. 491-508 | DOI

[24] I. Sørensen; D. Domozych; W. G. T. Willats How have plant cell walls evolved?, Plant Physiol., Volume 153 (2010) no. 2, pp. 366-372 | DOI

[25] S. L. Fernandez-Valverde; F. Aguilera; R. A. Ramos-Dıaz Inference of developmental gene regulatory networks beyond classical model systems: new approaches in the post-genomic era, Integrat. Comparat. Biol., Volume 58 (2018) no. 4, pp. 640-653 | DOI

[26] Z. A. Popper; G. Michel; C. Hervé; D. S. Domozych; W. G. T. Willats; M. G. Tuohy; B. Kloareg; D. B. Stengel Evolution and diversity of plant cell walls: from algae to flowering plants, Annu. Rev. Plant Biol., Volume 62 (2011), pp. 567-590 | DOI

[27] K. T. Haas; R. Wightman; E. M. Meyerowitz; A. Peaucelle Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells, Science, Volume 367 (2020) no. 6481, pp. 1003-1007 | DOI

[28] P. Durand-Smet; N. Chastrette; A. Guiroy; A. Richert; A. Berne-Dedieu; J. Szecsi; A. Boudaoud; J. M. Frachisse; M. Bendhamane; O. Hamant; A. Asnacios A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms, Biophys. J., Volume 107 (2014) no. 10, pp. 2237-2244 | DOI

Cited by Sources:

Comments - Policy


Articles of potential interest

Yves Couder: Putting mechanics back into the shoot apical meristem

Jan Traas; Olivier Hamant

C. R. Méca (2020)


Plant development: A TALE story

Olivier Hamant; Véronique Pautot

C. R. Biol (2010)


Auxin: A major regulator of organogenesis

Isabelle Bohn-Courseau

C. R. Biol (2010)