Comptes Rendus
Biology and Mechanics
Yves Couder: Putting mechanics back into the shoot apical meristem
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 679-684.

In 2008, we published an article proposing that the microtubular cytoskeleton in plants use maximal tensile stress directions to guide organ growth []. Yves Couder was instrumental in that project. Here are some memories and prospects from this collaborative and interdisciplinary endeavor.

Published online:
DOI: 10.5802/crmeca.19
Keywords: Morphogenesis, Mechanical stress, Microtubules, Interdisciplinary research, Plant development
Jan Traas 1; Olivier Hamant 1

1 Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Jan Traas and Olivier Hamant},
     title = {Yves {Couder:} {Putting} mechanics back into the shoot apical meristem},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {679--684},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.19},
     language = {en},
AU  - Jan Traas
AU  - Olivier Hamant
TI  - Yves Couder: Putting mechanics back into the shoot apical meristem
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 679
EP  - 684
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.19
LA  - en
ID  - CRMECA_2020__348_6-7_679_0
ER  - 
%0 Journal Article
%A Jan Traas
%A Olivier Hamant
%T Yves Couder: Putting mechanics back into the shoot apical meristem
%J Comptes Rendus. Mécanique
%D 2020
%P 679-684
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.19
%G en
%F CRMECA_2020__348_6-7_679_0
Jan Traas; Olivier Hamant. Yves Couder: Putting mechanics back into the shoot apical meristem. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 679-684. doi : 10.5802/crmeca.19.

[1] O. Hamant; M. G. Heisler; H. Jonsson; P. Krupinski; M. Uyttewaal; P. Bokov; F. Corson; P. Sahlin; A. Boudaoud; E. M. Meyerowitz et al. Developmental patterning by mechanical signals in Arabidopsis, Science, Volume 322 (2008), pp. 1650-1655 | DOI

[2] S. Douady; Y. Couder Phyllotaxis as a physical self-organized growth process, Phys. Rev. Lett., Volume 68 (1992), pp. 2098-2101 | DOI

[3] L. F. Hernandez; P. B. Green Transductions for the expression of structural pattern: analysis in sunflower, Plant Cell, Volume 5 (1993), pp. 1725-1738 | DOI

[4] A. J. Fleming Induction of leaf primordia by the cell wall protein expansin, Science, Volume 276 (1997), pp. 1415-1418 | DOI

[5] P. B. de Reuille; I. Bohn-Courseau; C. Godin; J. Traas A protocol to analyse cellular dynamics during plant development, Plant J. Cell Mol. Biol., Volume 44 (2005), pp. 1045-1053 | DOI

[6] D. J. Nicholson Is the cell really a machine?, J. Theor. Biol., Volume 477 (2019), pp. 108-126 | DOI | MR

[7] Y. Couder; L. Pauchard; C. Allain; M. Adda-Bedia; S. Douady The leaf venation as formed in a tensorial field, Eur. Phys. J. B, Volume 28 (2002), pp. 135-138 | DOI

[8] Branching in Nature: Dynamics and Morphogenesis of Branching Structures, from Cell to River Networks: Les Houches School, October 11–15, 1999 (V. Fleury; J.-F. Gouyet; M. Léonetti, eds.), Springer, EDP Sciences, Berlin, New York, Les Ulis, 2001

[9] S. Perrard; M. Labousse; M. Miskin; E. Fort; Y. Couder Self-organization into quantized eigenstates of a classical wave-driven particle, Nat. Commun., Volume 5 (2014), p. 3219 | DOI

[10] F. Corson; O. Hamant; S. Bohn; J. Traas; A. Boudaoud; Y. Couder Turning a plant tissue into a living cell froth through isotropic growth, Proc. Natl Acad. Sci. USA, Volume 106 (2009), pp. 8453-8458 | DOI

[11] M. G. Heisler; O. Hamant; P. Krupinski; M. Uyttewaal; C. Ohno; H. Jonsson; J. Traas; E. M. Meyerowitz Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport, PLoS Biol., Volume 8 (2010), e1000516 | DOI

[12] A. Sampathkumar; P. Krupinski; R. Wightman; P. Milani; A. Berquand; A. Boudaoud; O. Hamant; H. Jonsson; E. M. Meyerowitz Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells, eLife, Volume 3 (2014), e01967 | DOI

[13] N. Hervieux; M. Dumond; A. Sapala; A.-L. Routier-Kierzkowska; D. Kierzkowski; A. H. K. Roeder; R. S. Smith; A. Boudaoud; O. Hamant A mechanical feedback restricts sepal growth and shape in arabidopsis, Curr. Biol., Volume 26 (2016), pp. 1019-1028 | DOI

[14] S. Verger; Y. Long; A. Boudaoud; O. Hamant A tension-adhesion feedback loop in plant epidermis, eLife, Volume 7 (2018), e34460 | DOI

[15] S. Robinson; C. Kuhlemeier Global compression reorients cortical microtubules in arabidopsis hypocotyl epidermis and promotes growth, Curr. Biol., Volume 28 (2018) no. 11, p. 1794-1802.e2 | DOI

[16] E. Jacques; J.-P. Verbelen; K. Vissenberg Mechanical stress in Arabidopsis leaves orients microtubules in a “continuous” supracellular pattern, BMC Plant Biol., Volume 13 (2013), p. 163 | DOI

[17] A. Creff; L. Brocard; G. Ingram A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat, Nat. Commun., Volume 6 (2015), p. 6382 | DOI

[18] Z. Hejnowicz; A. Rusin; T. Rusin Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl, J. Plant Growth Regul., Volume 19 (2000), pp. 31-44 | DOI

[19] P. Green; A. King A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture, Aust. J. Biol. Sci., Volume 19 (1966), pp. 421-437 | DOI

[20] M. Uyttewaal; A. Burian; K. Alim; B. Landrein; D. Borowska-Wykret; A. Dedieu; A. Peaucelle; M. Ludynia; J. Traas; A. Boudaoud et al. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis, Cell, Volume 149 (2012), pp. 439-451 | DOI

[21] N. Hervieux; S. Tsugawa; A. Fruleux; M. Dumond; A.-L. Routier-Kierzkowska; T. Komatsuzaki; A. Boudaoud; J. C. Larkin; R. S. Smith; C.-B. Li et al. Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility, Curr. Biol., Volume 27 (2017), p. 3468-3479.e4 | DOI

[22] D. Riveline; E. Zamir; N. Q. Balaban; U. S. Schwarz; T. Ishizaki; S. Narumiya; Z. Kam; B. Geiger; A. D. Bershadsky Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism, J. Cell Biol., Volume 153 (2001), pp. 1175-1186 | DOI

[23] V. I. Risca; E. B. Wang; O. Chaudhuri; J. J. Chia; P. L. Geissler; D. A. Fletcher Actin filament curvature biases branching direction, Proc. Natl Acad. Sci. USA, Volume 109 (2012), pp. 2913-2918 | DOI

[24] K. Hayakawa; H. Tatsumi; M. Sokabe Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament, J. Cell Biol., Volume 195 (2011), pp. 721-727 | DOI

[25] A. D. Franck; A. F. Powers; D. R. Gestaut; T. Gonen; T. N. Davis; C. L. Asbury Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis, Nat. Cell Biol., Volume 9 (2007), pp. 832-837 | DOI

[26] A. Trushko; E. Schäffer; J. Howard The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force, Proc. Natl Acad. Sci. USA, Volume 110 (2013), pp. 14670-14675 | DOI

[27] V. Mirabet; P. Krupinski; O. Hamant; E. M. Meyerowitz; H. Jönsson; A. Boudaoud The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues, PLoS Comput. Biol., Volume 14 (2018), e1006011 | DOI

[28] J. D. Díaz-Valencia; M. M. Morelli; M. Bailey; D. Zhang; D. J. Sharp; J. L. Ross Drosophila Katanin-60 Depolymerizes and Severs at Microtubule Defects, Biophys. J., Volume 100 (2011), pp. 2440-2449 | DOI

[29] J. C. Ambrose; G. O. Wasteneys CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules, Mol. Biol. Cell, Volume 19 (2008), pp. 4730-4737 | DOI

[30] Q. Zhang; W. Zhang Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells, Protein Cell, Volume 7 (2016), pp. 81-88 | DOI

[31] M. Bringmann; B. Landrein; C. Schudoma; O. Hamant; M.-T. Hauser; S. Persson Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled, Trends Plant Sci., Volume 17 (2012), pp. 666-674 | DOI

[32] C. Ambrose; J. F. Allard; E. N. Cytrynbaum; G. O. Wasteneys A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis, Nat. Commun., Volume 2 (2011), p. 430 | DOI

[33] C. Kirchhelle; D. Garcia-Gonzalez; N. G. Irani; A. Jérusalem; I. Moore Two mechanisms regulate directional cell growth in Arabidopsis lateral roots, eLife, Volume 8 (2019), e47988 | DOI

Cited by Sources:

Articles of potential interest

Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species

Alexis Peaucelle

C. R. Méca (2020)

The plasma membrane as a mechanotransducer in plants

Leia Colin; Olivier Hamant

C. R. Biol (2021)

A dive into the cell wall with Arabidopsis

Herman Höfte

C. R. Biol (2022)