Comptes Rendus
Article de synthèse
A review of characteristic lengths in the coupled criterion framework and advanced fracture models
[Une revue des longueurs caractéristiques dans le cadre du critère couplé et dans les modèles de fracture avancés]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 91-111.

Cet article de revue explore l’importance des longueurs caractéristiques en mécanique de la rupture, en se concentrant sur le cadre du Critère Couplé. Il met en lumière les limites des approches traditionnelles de la mécanique de la rupture élastique linéaire, qui peinent à prédire les comportements des fissures à petite échelle, et souligne le besoin de modèles permettant aux longueurs caractéristiques d’émerger des propriétés des matériaux et de la géométrie, plutôt que d’être définies a priori.

La revue couvre deux longueurs caractéristiques principales : la longueur de fissure d’initiation et la longueur d’Irwin, en examinant leurs interactions avec les longueurs utilisées dans d’autres approches de rupture, telles que les méthodes de champ de phase, les modèles de zone cohésive et les simulations à l’échelle atomique. Les résultats montrent que la longueur d’Irwin apparaît systématiquement dans les modèles combinant des critères de contrainte et énergétique, soulignant son rôle fondamental dans la prédiction de la rupture.

L’étude identifie les limites des modèles actuels, en particulier dans les cas impliquant des singularités fortes ou lorsque la condition énergétique domine, et propose des améliorations en incorporant des descriptions de zone de processus ou des techniques de régularisation issues des modèles de champ de phase. Ces améliorations pourraient mieux capturer les comportements complexes à des plus petites échelles.

L’article conclut en prônant une approche combinée intégrant divers modèles de rupture, ce qui pourrait offrir une compréhension plus complète de l’initiation et de la propagation des fissures à différentes échelles. Cette stratégie intégrative permettrait des prédictions plus précises et une compréhension approfondie des mécanismes de la rupture.

The review paper explores the significance of characteristic lengths in fracture mechanics, focusing on the Coupled Criterion framework. It addresses limitations in traditional Linear Elastic Fracture Mechanics, which struggle to predict small-scale crack behaviors, and highlights the need for models that allow characteristic lengths to emerge from material properties and geometry rather than being predefined inputs.

The review covers two main characteristic lengths: the initiation crack length and Irwin’s length, examining their interactions with lengths used in other fracture approaches such as Phase-Field methods, Cohesive Zone Models, and atomic-scale simulations. The findings show that Irwin’s length consistently appears in models that combine stress and energy criteria, indicating its fundamental role in fracture prediction.

The study identifies limitations in current models, especially in cases involving strong singularities or where the energy condition dominates, and suggests improvements by incorporating process zone descriptions or regularization techniques from Phase-Field models. These enhancements could better capture the complex behaviors at smaller scales.

The paper concludes by advocating for a combined approach that integrates various fracture models, which could provide a more comprehensive understanding of crack initiation and propagation across different scales. This integrative strategy would allow for more accurate predictions and a deeper insight into the mechanics of fracture.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.280
Keywords: Finite fracture mechanics, Coupled criterion, Characteristic length, Crack initiation, Irwin’s length
Mots-clés : Mécanique de la rupture finie, Critère couplé, Longueur caractéristique, Initiation de fissure, Longueur d’Irwin

Gergely Molnár 1 ; Aurélien Doitrand 2 ; Rafael Estevez 3 ; Anthony  Gravouil 4

1 CNRS, INSA Lyon, LaMCoS, UMR5259, 69621 Villeurbanne, France
2 Université Lyon, INSA-Lyon, UCBL, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
3 Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, F-38000 Grenoble, France
4 Univ Lyon, CNRS, INSA Lyon, LaMCoS, UMR5259, 69621 Villeurbanne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_91_0,
     author = {Gergely Moln\'ar and Aur\'elien Doitrand and Rafael Estevez and Anthony ~Gravouil},
     title = {A review of characteristic lengths in the coupled criterion framework and advanced fracture models},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {91--111},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.280},
     language = {en},
}
TY  - JOUR
AU  - Gergely Molnár
AU  - Aurélien Doitrand
AU  - Rafael Estevez
AU  - Anthony  Gravouil
TI  - A review of characteristic lengths in the coupled criterion framework and advanced fracture models
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 91
EP  - 111
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.280
LA  - en
ID  - CRMECA_2025__353_G1_91_0
ER  - 
%0 Journal Article
%A Gergely Molnár
%A Aurélien Doitrand
%A Rafael Estevez
%A Anthony  Gravouil
%T A review of characteristic lengths in the coupled criterion framework and advanced fracture models
%J Comptes Rendus. Mécanique
%D 2025
%P 91-111
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.280
%G en
%F CRMECA_2025__353_G1_91_0
Gergely Molnár; Aurélien Doitrand; Rafael Estevez; Anthony  Gravouil. A review of characteristic lengths in the coupled criterion framework and advanced fracture models. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 91-111. doi : 10.5802/crmeca.280. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.280/

[1] A. A. Griffith The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A, Volume 221 (1921) no. 582-593, pp. 163-198

[2] A. A. Griffith The theory of rupture, First International Congress on Applied Mechanics, Waltman, 1924, pp. 55-63

[3] L. da Vinci Codex Atlanticus, Bibilioteca Ambrosiana, 1504 https://en.wikipedia.org/wiki/Codex_Atlanticus

[4] E. Williams Some observations of Leonardo, Galileo, Mariotte and others relative to size effect, Ann. Sci., Volume 13 (1957) no. 1, pp. 23-29

[5] G. Galilei Discourses and Mathematical Demonstrations Relating to Two New Sciences, Louis Elsevier, Leida (Leiden), 1638

[6] D. Kirkaldy Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Various Kinds of Wrought-iron and Steel, Private Publication, London, 1864

[7] E. Mariotte Traité du mouvement des eaux et des autres corps fluides, Chez Jean Jombert, Paris, 1886

[8] F. T. Peirce Theorems on the strength of long and of composite specimens, J. Text Inst. Trans., Volume 17 (1926) no. 7, p. T355-T368 | DOI

[9] L. C. H. Tippett On the extreme individuals and the range of samples taken from a normal population, Biometrika, Volume 17 (1925), pp. 364-387

[10] W. Weibull Statistical theory of the strength of materials, Proc. R. Acad. Eng. Sci., Volume 15 (1939) no. 1, pp. 1-45

[11] W. Weibull The phenomenon of rupture in solids, IVA Handlingar, Volume 153 (1939), pp. 1-55

[12] A. M. Freudenthal The statistical aspect of fatigue of materials, Proc. R. Soc. Lond. Ser. A, Volume 187 (1946) no. 1011, pp. 416-429

[13] P. Kittl; G. Díaz Size effect on fracture strength in the probabilistic strength of materials, Reliab. Eng. Syst. Saf., Volume 28 (1990) no. 1, pp. 9-21 | DOI

[14] A. G. Evans A general approach for the statistical analysis of multiaxial fracture, J. Am. Ceram. Soc., Volume 61 (1978) no. 7-8, pp. 302-308

[15] F. M. Beremin; A. Pineau; F. Mudry; J. C. Devaux; Y. DEscatha; P. Ledermann A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A, Volume 14 (1983), pp. 2277-2287

[16] Y. Lei; N. P. O’Dowd; E. P. Busso; G. A. Webster Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials, Int. J. Fract., Volume 89 (1998), pp. 245-268

[17] G. R. Irwin Fracture, Springer, Berlin, Heidelberg, 1958

[18] Z. P. Bažant Size effect in blunt fracture: concrete, rock, metal, J. Eng. Mech., Volume 110 (1984) no. 4, pp. 518-535

[19] Z. P. Bažant; J. Kim; P. Pfeiffer Nonlinear fracture properties from size effect tests, J. Struct. Eng., Volume 112 (1986) no. 2, pp. 289-307

[20] Z. P. Bažant Size effect on structural strength: a review, Arch. Appl. Mech., Volume 69 (1999), pp. 703-725

[21] H. Kimoto; S. Usami; H. Miyata Flaw size dependence in fracture stress of glass and polycrystalline ceramics, Trans. Jpn. Soc. Mech. Eng. Ser. A, Volume 51 (1985) no. 471, pp. 2482-2488

[22] S. Usami; H. Kimoto; I. Takahashi; S. Shida Strength of ceramic materials containing small flaws, Eng. Frac. Mech., Volume 23 (1986) no. 4, pp. 745-761

[23] D. Leguillon; E. Martin Prediction of multi-cracking in sub-micron films using the coupled criterion, Int. J. Frac., Volume 209 (2018), pp. 187-202 | DOI

[24] E. Martin; D. Leguillon; O. Sevecek; R. Bermejo Understanding the tensile strength of ceramics in the presence of small critical flaws, Eng. Frac. Mech., Volume 201 (2018), pp. 167-175 | DOI

[25] A. Doitrand; A. Sapora Nonlinear implementation of finite fracture mechanics: a case study on notched Brazilian disk samples, Int. J. Non-Linear Mech., Volume 119 (2020), 103245 | DOI

[26] A. Sapora; A. R. Torabi; S. Etesam; P. Cornetti Finite fracture mechanics crack initiation from a circular hole, Fatigue Frac. Eng. Mater. Struct., Volume 41 (2018) no. 7, pp. 1627-1636 | DOI

[27] J. Luo; J. Wang; E. Bitzek et al. Size-dependent brittle-to-ductile transition in silica glass nanofibers, Nano Lett., Volume 16 (2016) no. 1, pp. 105-113

[28] Z. P. Bažant; M. T. Kazemi Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length, J. Am. Ceram. Soc., Volume 73 (1990) no. 7, pp. 1841-1853

[29] Z. P. Bažant; I. M. Daniel; Z. Li Size effect and fracture characteristics of composite laminates, J. Eng. Mater. Technol., Volume 118 (1996) no. 3, pp. 317-324

[30] S. Aicher Process zone length and fracture energy of spruce wood in mode-I from size effect, Wood Fiber Sci., Volume 42 (2010) no. 2, pp. 237-247

[31] S. P. Shah; S. E. Swartz Fracture of concrete and rock, SEM-RILEM International Conference, Springer, New York, 1987

[32] S. Keten; Z. Xu; B. Ihle; M. J. Buehler Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk, Nat. Mater., Volume 9 (2010) no. 4, pp. 359-367

[33] J. P. Dempsey; R. M. Adamson; S. V. Mulmule Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, NWT, Int. J. Frac., Volume 95 (1999) no. 1, pp. 347-366

[34] G. R. Irwin Fracture dynamics, Fracturing of Metals, American Society for Metals, Cleveland, 1948, pp. 147-166

[35] E. Orowan Fracture and strength of solids, Rep. Prog. Phys., Volume 12 (1949), pp. 185-232

[36] G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech., Volume 23 (1959) no. 3, pp. 622-636 | DOI

[37] D. S. Dugdale Yielding of steel sheets containing slits, J. Mech. Phys. Solids, Volume 8 (1960) no. 2, pp. 100-104 | DOI

[38] J. F. Labuz; S. P. Shah; C. H. Dowding Post peak tensile load-displacement response and the fracture process zone in rock, The 24th US Symposium on Rock Mechanics (USRMS), Association of Engineering Geologists, 1983

[39] W. Chengyong; L. Peide; H. Rongsheng; S. Xiutang Study of the fracture process zone in rock by laser speckle interferometry, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 27 (1990) no. 1, pp. 65-69

[40] E. Denarie; V. E. Saouma; A. Iocco; D. Varelas Concrete fracture process zone characterization with fiber optics, J. Eng. Mech., Volume 127 (2001) no. 5, pp. 494-502

[41] J. J. Du; A. S. Kobayashi; N. M. Hawkins An experimental-numerical analysis of fracture process zone in concrete fracture specimens, Eng. Frac. Mech., Volume 35 (1990) no. 1-3, pp. 15-27

[42] Z. K. Guo; A. S. Kobayashi; N. M. Hawkins Further studies on fracture process zone for mode I concrete fracture, Eng. Frac. Mech., Volume 46 (1993) no. 6, pp. 1041-1049

[43] C.-T. Yu; A.-S. Kobayashi Fracture process zone associated with mixed mode fracture of SiCw/Al2O3, J. Non-Cryst. Solids, Volume 177 (1994), pp. 26-35

[44] A. Zang; F. C. Wagner; S. Stanchits; C. Janssen; G. Dresen Fracture process zone in granite, J. Geophys. Res.: Solid Earth, Volume 105 (2000) no. B10, pp. 23651-23661

[45] K. Otsuka; H. Date Fracture process zone in concrete tension specimen, Eng. Frac. Mech., Volume 65 (2000) no. 2-3, pp. 111-131

[46] W. K. Zietlow; J. F. Labuz Measurement of the intrinsic process zone in rock using acoustic emission, Int. J. Rock Mech. Min. Sci., Volume 35 (1998) no. 3, pp. 291-299

[47] J. F. Labuz; S. P. Shah; C. H. Dowding The fracture process zone in granite: evidence and effect, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 24 (1987), pp. 235-246

[48] A. Neimitz; E. C. Aifantis On the size and shape of the process zone, Eng. Frac. Mech., Volume 26 (1987) no. 4, pp. 491-503

[49] L. Cedolin; S. D. Poli; I. Iori Experimental determination of the fracture process zone in concrete, Cem. Concr. Res., Volume 13 (1983) no. 4, pp. 557-567

[50] J. M. Vermilye; C. H. Scholz The process zone: A microstructural view of fault growth, J. Geophys. Res.: Solid Earth, Volume 103 (1998) no. B6, pp. 12223-12237

[51] Y. Yu; W. Zeng; W. Liu; H. Zhang; X. Wang Crack propagation and fracture process zone (FPZ) of wood in the longitudinal direction determined using digital image correlation (DIC) technique, Remote Sens., Volume 11 (2019) no. 13, pp. 1-13 | DOI

[52] K. Haidar; G. Pijaudier-Cabot; J.-F. Dubé; A. Loukili Correlation between the internal length, the fracture process zone and size effect in model materials, Mater. Struct., Volume 38 (2005) no. 2, pp. 201-210

[53] C. L. Rountree; D. Bonamy; D. Dalmas; S. Prades; R. K. Kalia; C. Guillot; E. Bouchaud Fracture in glass via molecular dynamics simulations and atomic force microscopy experiments, Phys. Chem. Glas.: Eur. J. Glass Sci. Technol. B, Volume 51 (2010) no. 2, pp. 127-132

[54] Z. Brooks Fracture process zone: Microstructure and nanomechanics in quasi-brittle materials, PhD thesis, Massachusetts Institute of Technology (2013)

[55] J. Réthoré; R. Estevez Identification of a cohesive zone model from digital images at the micron-scale, J. Mech. Phys. Solids, Volume 61 (2013) no. 6, pp. 1407-1420

[56] P.-P. Cortet; S. Santucci; L. Vanel; S. Ciliberto Slow crack growth in polycarbonate films, Europhys. Lett., Volume 71 (2005) no. 2, pp. 242-248

[57] W. Döll Optical interference measurements and fracture mechanics analysis of crack tip craze zones, Adv. Polym. Sci., Volume 52-53 (1983), pp. 105-168

[58] W. Döll; L. Könczöl Micromechanics of fracture under static and fatigue loading: Optical interferometry of crack tip craze zones, Adv. Poly. Sci., Volume 91-92 (1990), pp. 137-214

[59] T. A. Schaedler; A. J. Jacobsen; A. Torrents; A. E. Sorensen; J. Lian; J. R. Greer; L. Valdevit; W. B. Carter Ultralight metallic microlattices, Science, Volume 334 (2011) no. 6058, pp. 962-965 | DOI

[60] D. Leguillon Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech.—A/Solids, Volume 21 (2002) no. 1, pp. 61-72 | DOI

[61] A. Parvizi; K. W. Garrett; J. E. Bailey Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates, J. Mater. Sci., Volume 13 (1978), pp. 195-201 | DOI

[62] G. Lamé; B. Clapeyron Mémoire sur l’équilibre intérieur des corps solides homogènes, J. Reine Angew. Math., Volume 7 (1831), pp. 381-413

[63] H. Neuber Theorie der technischen Formzahl, Forsch. Ingenieurwes. A, Volume 7 (1936) no. 6, pp. 271-274 | DOI

[64] R. E. Peterson Methods of Correlating Data from Fatigue Tests of Stress Concentration Specimens, Macmillan, New York, 1938, 179 pages (Stephen Timoshenko Anniversary Volume)

[65] J. M. Whitney; R. J. Nuismer Stress fracture criteria for laminated composites containing stress concentrations, J. Compos. Mater., Volume 8 (1974) no. 3, pp. 253-265 | DOI

[66] K. Tanaka Engineering formulae for fatigue strength reduction due to crack-like notches, Int. J. Frac., Volume 22 (1983) no. 2, p. R39-R46 | DOI

[67] D. Taylor The Theory of Critical Distances, Elsevier Science Ltd, Oxford, 2007

[68] J. Aveston; A. Kelly Theory of multiple fracture of fibrous composites, J. Mater. Sci., Volume 8 (1973) no. 3, pp. 352-362 | DOI

[69] Z. Hashin Finite thermoelastic fracture criterion with application to laminate cracking analysis, J. Mech. Phys. Solids, Volume 44 (1996) no. 7, pp. 1129-1145 | DOI

[70] J. A. Nairn Fracture mechanics of composites with residual stresses, traction-loaded cracks, and imperfect interfaces, Fracture of Polymers, Composites and Adhesives (J. G. Williams; A. Pavan, eds.) (European Structural Integrity Society), Volume 27, Elsevier, Les Diablerets, 2000, pp. 111-121 | DOI

[71] P. Weißgraeber; D. Leguillon; W. Becker A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., Volume 86 (2016) no. 1-2, pp. 375-401 | DOI

[72] A. Doitrand; T. Duminy; H. Girard; X. Chen A review of the coupled criterion, J. Theor. Comput. Appl. Mech. (2024), 11072 | DOI

[73] W. J. M. Rankine II. On the stability of loose earth, Philos. Trans. R. Soc. Lond., Volume 147 (1857), pp. 9-27

[74] G. Molnár; A. Doitrand; R. Estevez; A. Gravouil Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion, Theor. Appl. Frac. Mech., Volume 109 (2020), 102736 | DOI

[75] A. Doitrand; R. Henry; J. Chevalier; S. Meille Revisiting the strength of micron-scale ceramic platelets, J. Am. Ceramic Soc., Volume 103 (2020), pp. 6991-7000 | DOI

[76] D. Leguillon; E. Sanchez-Palencia Computation of Singular Solutions in Elliptic Problems and Elasticity, Wiley, USA, 1987

[77] A. Doitrand; E. Martin; D. Leguillon Numerical implementation of the coupled criterion: Matched asymptotic and full finite element approaches, Finite Element Anal. Des., Volume 168 (2020), 103344 | DOI

[78] D. Leguillon; D. Quesada; C. Putot; E. Martin Prediction of crack initiation at blunt notches and cavities—size effects, Eng. Frac. Mech., Volume 74 (2007) no. 15, pp. 2420-2436 | DOI

[79] D. Taylor; P. Cornetti; N. Pugno The fracture mechanics of finite crack extension, Eng. Frac. Mech., Volume 72 (2005) no. 7, pp. 1021-1038 | DOI

[80] A. Chao Correas; M. Corrado; A. Sapora; P. Cornetti Size-effect on the apparent tensile strength of brittle materials with spherical cavities, Theor. Appl. Frac. Mech., Volume 116 (2021), 103120 | DOI

[81] Y. Liu; C. Deng; B. Gong Discussion on equivalence of the theory of critical distances and the coupled stress and energy criterion for fatigue limit prediction of notched specimens, Int. J. Fatigue, Volume 131 (2020), 105236 | DOI

[82] A. Campagnolo; F. Berto; D. Leguillon Fracture assessment of sharp V-notched components under Mode II loading: a comparison among some recent criteria, Theor. Appl. Frac. Mech., Volume 85 (2016), pp. 217-226 | DOI

[83] Z. Yosibash; A. Bussiba; I. Gilad Failure criteria for brittle elastic materials, Int. J. Frac., Volume 125 (2004), pp. 307-333 | DOI

[84] B. Gillham; A. Yankin; F. McNamara et al. Tailoring the theory of critical distances to better assess the combined effect of complex geometries and process-inherent defects during the fatigue assessment of SLM Ti-6Al-4V, Int. J. Fatigue, Volume 172 (2023), 107602 | DOI

[85] A. K. Matpadi Raghavendra; V. Maurel; L. Marcin; H. Proudhon Fatigue life prediction at mesoscopic scale of samples containing casting defects: A novel energy based non-local model, Int. J. Fatigue, Volume 188 (2024), 108485 | DOI

[86] A. Doitrand; G. Molnár; D. Leguillon; E. Martin; N. Carrère Dynamic crack initiation assessment with the coupled criterion, Eur. J. Mech.—A/Solids, Volume 93 (2022), 104483 | DOI

[87] Z. Hamam; N. Godin; P. Reynaud; C. Fusco; N. Carrére; A. Doitrand Transverse cracking induced acoustic emission in carbon fiber-epoxy matrix composite laminates, Materials, Volume 15 (2022), pp. 1-15 | DOI

[88] B. Bourdin; G. A. Francfort; J. J. Marigo Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI

[89] B. Bourdin; G. A. Francfort; J.-J. Marigo The Variational Approach to Fracture, Springer, Netherlands, 2008

[90] J. Reinoso; A. Arteiro; M. Paggi; P. P. Camanho Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach, Compos. Sci. Technol., Volume 150 (2017), pp. 205-216 | DOI

[91] J. Bleyer; R. Alessi Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Eng., Volume 336 (2018), pp. 213-236 | DOI

[92] M. Strobl; P. Dowgiallo; T. Seelig Analysis of Hertzian indentation fracture in the framework of finite fracture mechanics, Int. J. Frac., Volume 206 (2017), pp. 67-79 | DOI

[93] M. Strobl; T. Seelig Phase field modeling of Hertzian indentation fracture, J. Mech. Phys. Solids, Volume 143 (2020), 104026 | DOI

[94] A. Kumar; B. Bourdin; G. A. Francfort; O. Lopez-Pamies Revisiting nucleation in the phase-field approach to brittle fracture, J. Mech. Phys. Solids, Volume 142 (2020), 104027 | DOI

[95] A. Abaza; J. Laurencin; A. Nakajo; S. Meille; J. Debayle; D. Leguillon Prediction of crack nucleation and propagation in porous ceramics using the phase-field approach, Theor. Appl. Frac. Mech., Volume 119 (2022), 103349 | DOI

[96] S. Jiménez-Alfaro; J. Reinoso; D. Leguillon; C. Maurini Finite fracture mechanics from the macro- to the micro-scale. comparison with the phase field model, Procedia Struct. Integr., Volume 42 (2022), pp. 553-560 (23 European Conference on Fracture) | DOI

[97] G. Molnár; A. Doitrand; V. Lazarus Phase-field simulation and coupled criterion link echelon cracks to internal length in antiplane shear, J. Mech. Phys. Solids, Volume 188 (2024), 105675 | DOI

[98] P. K. Kristensen; C. F. Niordson; E. Martinez-Paneda An assessment of phase field fracture: crack initiation and growth, Philos. Trans. R. Soc. A, Volume 379 (2021) no. 2203, 20210021 | DOI

[99] A. Doitrand; G. Molnár Understanding regularized crack initiation through the lens of finite fracture mechanics, preprint, 2024 | DOI

[100] G. Alfano; M. A. Crisfield Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Eng., Volume 50 (2001) no. 7, pp. 1701-1736 | DOI

[101] G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models, Compos. Sci. Technol., Volume 66 (2006) no. 6, pp. 723-730 | DOI

[102] P. Cornetti; A. Sapora; A. Carpinteri Short cracks and V-notches: finite fracture mechanics vs cohesive crack model, Eng. Frac. Mech., Volume 168 (2016), pp. 2-12 | DOI

[103] P. Cornetti; M. Munoz-Reja; A. Sapora; A. Carpinteri Finite fracture mechanics and cohesive crack model: weight functions vs cohesive laws, Int. J. Solids Struct., Volume 156-157 (2019), pp. 126-136 | DOI

[104] E. Martin; T. Vandellos; D. Leguillon; N. Carrère Initiation of edge debonding: coupled criterion versus cohesive zone model, Int. J. Frac., Volume 199 (2016), pp. 157-168 | DOI

[105] C. Henninger; D. Leguillon; E. Martin Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model, C. R. Méc., Volume 335 (2007) no. 7, pp. 388-393 | DOI

[106] S. Murer; D. Leguillon Static and fatigue failure of quasi-brittle materials at a V-notch using a Dugdale model, Eur. J. Mech.—A/Solids, Volume 29 (2010) no. 2, pp. 109-118 | DOI

[107] I. G. García; M. Paggi; V. Mantivc Fiber-size effects on the onset of fiber–matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models, Eng. Frac. Mech., Volume 115 (2014), pp. 96-110 | DOI

[108] P. Cornetti; M. Corrado; L. De Lorenzis; A. Carpinteri An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams, Int. J. Solids Struct., Volume 53 (2015), pp. 92-106 | DOI

[109] N. Stein; P. Weissgraeber; W. Becker A model for brittle failure in adhesive lap joints of arbitrary joint configuration, Compos. Struct., Volume 133 (2015), pp. 707-718 | DOI

[110] L. Távara; I. G. Garcia; R. Vodicka; C. G. Panagiotopoulos; V. Mantivc Revisiting the problem of debond initiation at fibre-matrix interface under transversal biaxial loads - a comparison of several non-classical fracture mechanics approaches, Trans Tech Publications, Ltd, Volume 713 (2016), pp. 232-235 | DOI

[111] R. Dimitri; P. Cornetti; V. Mantic; M. Trullo; L. De Lorenzis Mode-I debonding of a double cantilever beam: a comparison between cohesive crack modeling and finite fracture mechanics, Int. J. Solids Struct., Volume 124 (2017), pp. 57-72 | DOI

[112] P. L. Rosendahl; P. Weissgraeber; N. Stein; W. Becker Asymmetric crack onset at open-holes under tensile and in-plane bending loading, Int. J. Solids Struct., Volume 113-114 (2017), pp. 10-23 | DOI

[113] T. Gentieu; J. Jumel; A. Catapano; J. Broughton Size effect in particle debonding: comparisons between finite fracture mechanics and cohesive zone model, J. Compos. Mater., Volume 53 (2018) no. 14, pp. 1941-1954 | DOI

[114] A. Doitrand; R. Estevez; D. Leguillon Comparison between cohesive zone and coupled criterion modeling of crack initiation in rhombus hole specimens under quasi-static compression, Theor. Appl. Frac. Mech., Volume 99 (2019), pp. 51-59 | DOI

[115] M. Munoz-Reja; P. Cornetti; L. Távara; V. Mantivc Interface crack model using finite fracture mechanics applied to the double pull-push shear test, Int. J. Solids Struct., Volume 188-189 (2020), pp. 56-73 | DOI

[116] R. Aghababaei; D. H. Warner; J.-F. Molinari Critical length scale controls adhesive wear mechanisms, Nat. Commun., Volume 7 (2016) no. 1, 11816

[117] R. Aghababaei; D. H. Warner; J.-F. Molinari On the debris-level origins of adhesive wear, Proc. Nat. Acad. Sci., Volume 114 (2017) no. 30, pp. 7935-7940

[118] L. Brochard; S. Souguir; K. Sab Scaling of brittle failure: strength versus toughness, Int. J. Frac., Volume 210 (2018), pp. 153-166

[119] M. Ippolito; A. Mattoni; N. Pugno; L. Colombo Failure strength of brittle materials containing nanovoids, Phys. Rev. B, Volume 75 (2007) no. 22, 224110

[120] J. Zghal; K. Moreau; N. Moës; D. Leguillon; C. Stolz Analysis of the failure at notches and cavities in quasi-brittle media using the Thick Level Set damage model and comparison with the coupled criterion, Int. J. Frac., Volume 211 (2018), pp. 253-280 | DOI

[121] H. Zhang; P. Qiao A coupled peridynamic strength and fracture criterion for openhole failure analysis of plates under tensile load, Eng. Frac. Mech., Volume 204 (2018), pp. 103-118 | DOI

[122] H. Zhang; P. Qiao; L. Lu Failure analysis of plates with singular and non-singular stress raisers by a coupled peridynamic model, Int. J. Mech. Sci., Volume 157-158 (2019), pp. 446-456 | DOI

[123] A. Sapora; G. Efremidis; P. Cornetti Comparison between two nonlocal criteria: a case study on pressurized holes, Procedia Struct. Integr., Volume 33 (2021), pp. 456-464 | DOI

[124] J. Lemaitre How to use damage mechanics, Nucl. Eng. Design, Volume 80 (1984) no. 2, pp. 233-245

[125] L. M. Kachanov Rupture time under creep conditions, Izvestia Akademii Nauk SSSR, Otdelenie tekhnicheskich nauk (1958) no. 8, pp. 26-31 Leningrad University (translated) (in Russian) reprint: https://doi.org/10.1023/A:1018671022008

[126] G. Pijaudier-Cabot; Z. P. Bažant Nonlocal damage theory, J. Eng. Mech., Volume 113 (1987) no. 10, pp. 1512-1533

[127] A. Benallal; R. Billardon; J. Lemaitre Continuum damage mechanics and local approach to fracture: numerical procedures, Comput. Methods Appl. Mech. Eng., Volume 92 (1991) no. 2, pp. 141-155

[128] R. de Borst; A. Benallal; O. M. Heeres A gradient-enhanced damage approach to fracture, J. Phys. IV, Volume 6 (1996) no. C6, pp. 491-502

[129] R. H. J. Peerlings; R. de Borst; W. A. M. Brekelmans; J. H. P. de Vree Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Eng., Volume 39 (1996) no. 19, pp. 3391-3403

[130] R. H. J. Peerlings; R. de Borst; W. A. M. Brekelmans; M. G. D. Geers Gradient-enhanced damage modelling of concrete fracture, Mech. Cohesive-frict. Mater. Int. J. Exp. Model. Comput. Mater. Structures, Volume 3 (1998) no. 4, pp. 323-342

[131] R. de Borst Fracture in quasi-brittle materials: a review of continuum damage-based approaches, Eng. Frac. Mech., Volume 69 (2002) no. 2, pp. 95-112

[132] M. G. D. Geers; R. de Borst; W. A. M. Brekelmans; R. H. J. Peerlings Strain-based transient-gradient damage model for failure analyses, Comput. Methods Appl. Mech. Eng., Volume 160 (1998) no. 1-2, pp. 133-153

[133] Z. P. Bažant; G. Pijaudier-Cabot Measurement of characteristic length of nonlocal continuum, J. Eng. Mech., Volume 115 (1989) no. 4, pp. 755-767

[134] N. Carrère; E. Martin; D. Leguillon Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints, Eng. Frac. Mech., Volume 138 (2015), pp. 185-201 | DOI

[135] E. O. Hall The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Section B, Volume 64 (1951) no. 9, pp. 747-753 | DOI

[136] N. J. Petch The cleavage strength of polycrystals, J. Iron Steel Inst., Volume 174 (1953), pp. 25-28

[137] G. Molnár; A. Doitrand; A. Jaccon; B. Prabel; A. Gravouil Thermodynamically consistent linear-gradient damage model in Abaqus, Eng. Frac. Mech., Volume 266 (2022), 108390 | DOI

[138] D. Leguillon; C. Lacroix; E. Martin Interface debonding ahead of a primary crack, J. Mech. Phys. Solids, Volume 48 (2000) no. 10, pp. 2137-2161 | DOI

[139] D. Leguillon; S. Murer Fatigue crack nucleation at a stress concentration point, CP2012 Conference Proceedings, Volume 46, ESIS Publishing House, 2012 https://www.gruppofrattura.it/ocs/index.php/esis/CP2012/paper/viewFile/9235/5996

[140] M. T. Aranda; D. Leguillon Prediction of failure of hybrid composites with ultra-thin carbon/epoxy layers using the Coupled Criterion, Eng. Frac. Mech., Volume 281 (2023), 109053 | DOI

[141] B. Mittelman; Z. Yosibash Asymptotic analysis of the potential energy difference because of a crack at a V-notch edge in a 3D domain, Eng. Frac. Mech., Volume 131 (2014), pp. 232-256 | DOI

[142] B. Mittelman; Z. Yosibash Energy release rate cannot predict crack initiation orientation in domains with a sharp V-notch under mode III loading, Eng. Frac. Mech., Volume 141 (2015), pp. 230-241 | DOI

[143] A. Doitrand; D. Leguillon; G. Molnár; V. Lazarus Revisiting facet nucleation under mixed mode I+III loading with T-stress and mode-dependent fracture properties, Int. J. Frac., Volume 242 (2023), pp. 85-106 | DOI

[144] M. Klinsmann; D. Rosato; M. Kamlah; R. M. McMeeking An assessment of the phase field formulation for crack growth, Comput. Methods Appl. Mech. Eng., Volume 294 (2015), pp. 313-330 | DOI

[145] D. Leguillon; Z. Yosibash Failure initiation at V-notch tips in quasi-brittle materials, Int. J. Solids Struct., Volume 122-123 (2017), pp. 1-13 | DOI

[146] D. André; J. Girardot; C. Hubert A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model, Comput. Methods Appl. Mech. Eng., Volume 350 (2019), pp. 100-122

[147] M. Voisin-Leprince; J. Garcia-Suarez; G. Anciaux; J.-F. Molinari Two-scale concurrent simulations for crack propagation using FEM–DEM bridging coupling, Comput. Part. Mech., Volume 11 (2024) no. 5, pp. 2235-2243

Cité par Sources :

Commentaires - Politique