[Une revue des longueurs caractéristiques dans le cadre du critère couplé et dans les modèles de fracture avancés]
Cet article de revue explore l’importance des longueurs caractéristiques en mécanique de la rupture, en se concentrant sur le cadre du Critère Couplé. Il met en lumière les limites des approches traditionnelles de la mécanique de la rupture élastique linéaire, qui peinent à prédire les comportements des fissures à petite échelle, et souligne le besoin de modèles permettant aux longueurs caractéristiques d’émerger des propriétés des matériaux et de la géométrie, plutôt que d’être définies a priori.
La revue couvre deux longueurs caractéristiques principales : la longueur de fissure d’initiation et la longueur d’Irwin, en examinant leurs interactions avec les longueurs utilisées dans d’autres approches de rupture, telles que les méthodes de champ de phase, les modèles de zone cohésive et les simulations à l’échelle atomique. Les résultats montrent que la longueur d’Irwin apparaît systématiquement dans les modèles combinant des critères de contrainte et énergétique, soulignant son rôle fondamental dans la prédiction de la rupture.
L’étude identifie les limites des modèles actuels, en particulier dans les cas impliquant des singularités fortes ou lorsque la condition énergétique domine, et propose des améliorations en incorporant des descriptions de zone de processus ou des techniques de régularisation issues des modèles de champ de phase. Ces améliorations pourraient mieux capturer les comportements complexes à des plus petites échelles.
L’article conclut en prônant une approche combinée intégrant divers modèles de rupture, ce qui pourrait offrir une compréhension plus complète de l’initiation et de la propagation des fissures à différentes échelles. Cette stratégie intégrative permettrait des prédictions plus précises et une compréhension approfondie des mécanismes de la rupture.
The review paper explores the significance of characteristic lengths in fracture mechanics, focusing on the Coupled Criterion framework. It addresses limitations in traditional Linear Elastic Fracture Mechanics, which struggle to predict small-scale crack behaviors, and highlights the need for models that allow characteristic lengths to emerge from material properties and geometry rather than being predefined inputs.
The review covers two main characteristic lengths: the initiation crack length and Irwin’s length, examining their interactions with lengths used in other fracture approaches such as Phase-Field methods, Cohesive Zone Models, and atomic-scale simulations. The findings show that Irwin’s length consistently appears in models that combine stress and energy criteria, indicating its fundamental role in fracture prediction.
The study identifies limitations in current models, especially in cases involving strong singularities or where the energy condition dominates, and suggests improvements by incorporating process zone descriptions or regularization techniques from Phase-Field models. These enhancements could better capture the complex behaviors at smaller scales.
The paper concludes by advocating for a combined approach that integrates various fracture models, which could provide a more comprehensive understanding of crack initiation and propagation across different scales. This integrative strategy would allow for more accurate predictions and a deeper insight into the mechanics of fracture.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Mécanique de la rupture finie, Critère couplé, Longueur caractéristique, Initiation de fissure, Longueur d’Irwin
Gergely Molnár 1 ; Aurélien Doitrand 2 ; Rafael Estevez 3 ; Anthony Gravouil 4
@article{CRMECA_2025__353_G1_91_0, author = {Gergely Moln\'ar and Aur\'elien Doitrand and Rafael Estevez and Anthony ~Gravouil}, title = {A review of characteristic lengths in the coupled criterion framework and advanced fracture models}, journal = {Comptes Rendus. M\'ecanique}, pages = {91--111}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.280}, language = {en}, }
TY - JOUR AU - Gergely Molnár AU - Aurélien Doitrand AU - Rafael Estevez AU - Anthony Gravouil TI - A review of characteristic lengths in the coupled criterion framework and advanced fracture models JO - Comptes Rendus. Mécanique PY - 2025 SP - 91 EP - 111 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.280 LA - en ID - CRMECA_2025__353_G1_91_0 ER -
%0 Journal Article %A Gergely Molnár %A Aurélien Doitrand %A Rafael Estevez %A Anthony Gravouil %T A review of characteristic lengths in the coupled criterion framework and advanced fracture models %J Comptes Rendus. Mécanique %D 2025 %P 91-111 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.280 %G en %F CRMECA_2025__353_G1_91_0
Gergely Molnár; Aurélien Doitrand; Rafael Estevez; Anthony Gravouil. A review of characteristic lengths in the coupled criterion framework and advanced fracture models. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 91-111. doi : 10.5802/crmeca.280. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.280/
[1] The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A, Volume 221 (1921) no. 582-593, pp. 163-198
[2] The theory of rupture, First International Congress on Applied Mechanics, Waltman, 1924, pp. 55-63
[3] Codex Atlanticus, Bibilioteca Ambrosiana, 1504 https://en.wikipedia.org/wiki/Codex_Atlanticus
[4] Some observations of Leonardo, Galileo, Mariotte and others relative to size effect, Ann. Sci., Volume 13 (1957) no. 1, pp. 23-29
[5] Discourses and Mathematical Demonstrations Relating to Two New Sciences, Louis Elsevier, Leida (Leiden), 1638
[6] Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Various Kinds of Wrought-iron and Steel, Private Publication, London, 1864
[7] Traité du mouvement des eaux et des autres corps fluides, Chez Jean Jombert, Paris, 1886
[8] Theorems on the strength of long and of composite specimens, J. Text Inst. Trans., Volume 17 (1926) no. 7, p. T355-T368 | DOI
[9] On the extreme individuals and the range of samples taken from a normal population, Biometrika, Volume 17 (1925), pp. 364-387
[10] Statistical theory of the strength of materials, Proc. R. Acad. Eng. Sci., Volume 15 (1939) no. 1, pp. 1-45
[11] The phenomenon of rupture in solids, IVA Handlingar, Volume 153 (1939), pp. 1-55
[12] The statistical aspect of fatigue of materials, Proc. R. Soc. Lond. Ser. A, Volume 187 (1946) no. 1011, pp. 416-429
[13] Size effect on fracture strength in the probabilistic strength of materials, Reliab. Eng. Syst. Saf., Volume 28 (1990) no. 1, pp. 9-21 | DOI
[14] A general approach for the statistical analysis of multiaxial fracture, J. Am. Ceram. Soc., Volume 61 (1978) no. 7-8, pp. 302-308
[15] A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A, Volume 14 (1983), pp. 2277-2287
[16] Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials, Int. J. Fract., Volume 89 (1998), pp. 245-268
[17] Fracture, Springer, Berlin, Heidelberg, 1958
[18] Size effect in blunt fracture: concrete, rock, metal, J. Eng. Mech., Volume 110 (1984) no. 4, pp. 518-535
[19] Nonlinear fracture properties from size effect tests, J. Struct. Eng., Volume 112 (1986) no. 2, pp. 289-307
[20] Size effect on structural strength: a review, Arch. Appl. Mech., Volume 69 (1999), pp. 703-725
[21] Flaw size dependence in fracture stress of glass and polycrystalline ceramics, Trans. Jpn. Soc. Mech. Eng. Ser. A, Volume 51 (1985) no. 471, pp. 2482-2488
[22] Strength of ceramic materials containing small flaws, Eng. Frac. Mech., Volume 23 (1986) no. 4, pp. 745-761
[23] Prediction of multi-cracking in sub-micron films using the coupled criterion, Int. J. Frac., Volume 209 (2018), pp. 187-202 | DOI
[24] Understanding the tensile strength of ceramics in the presence of small critical flaws, Eng. Frac. Mech., Volume 201 (2018), pp. 167-175 | DOI
[25] Nonlinear implementation of finite fracture mechanics: a case study on notched Brazilian disk samples, Int. J. Non-Linear Mech., Volume 119 (2020), 103245 | DOI
[26] Finite fracture mechanics crack initiation from a circular hole, Fatigue Frac. Eng. Mater. Struct., Volume 41 (2018) no. 7, pp. 1627-1636 | DOI
[27] et al. Size-dependent brittle-to-ductile transition in silica glass nanofibers, Nano Lett., Volume 16 (2016) no. 1, pp. 105-113
[28] Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length, J. Am. Ceram. Soc., Volume 73 (1990) no. 7, pp. 1841-1853
[29] Size effect and fracture characteristics of composite laminates, J. Eng. Mater. Technol., Volume 118 (1996) no. 3, pp. 317-324
[30] Process zone length and fracture energy of spruce wood in mode-I from size effect, Wood Fiber Sci., Volume 42 (2010) no. 2, pp. 237-247
[31] Fracture of concrete and rock, SEM-RILEM International Conference, Springer, New York, 1987
[32] Nanoconfinement controls stiffness, strength and mechanical toughness of -sheet crystals in silk, Nat. Mater., Volume 9 (2010) no. 4, pp. 359-367
[33] Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, NWT, Int. J. Frac., Volume 95 (1999) no. 1, pp. 347-366
[34] Fracture dynamics, Fracturing of Metals, American Society for Metals, Cleveland, 1948, pp. 147-166
[35] Fracture and strength of solids, Rep. Prog. Phys., Volume 12 (1949), pp. 185-232
[36] The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech., Volume 23 (1959) no. 3, pp. 622-636 | DOI
[37] Yielding of steel sheets containing slits, J. Mech. Phys. Solids, Volume 8 (1960) no. 2, pp. 100-104 | DOI
[38] Post peak tensile load-displacement response and the fracture process zone in rock, The 24th US Symposium on Rock Mechanics (USRMS), Association of Engineering Geologists, 1983
[39] Study of the fracture process zone in rock by laser speckle interferometry, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 27 (1990) no. 1, pp. 65-69
[40] Concrete fracture process zone characterization with fiber optics, J. Eng. Mech., Volume 127 (2001) no. 5, pp. 494-502
[41] An experimental-numerical analysis of fracture process zone in concrete fracture specimens, Eng. Frac. Mech., Volume 35 (1990) no. 1-3, pp. 15-27
[42] Further studies on fracture process zone for mode I concrete fracture, Eng. Frac. Mech., Volume 46 (1993) no. 6, pp. 1041-1049
[43] Fracture process zone associated with mixed mode fracture of SiCw/Al2O3, J. Non-Cryst. Solids, Volume 177 (1994), pp. 26-35
[44] Fracture process zone in granite, J. Geophys. Res.: Solid Earth, Volume 105 (2000) no. B10, pp. 23651-23661
[45] Fracture process zone in concrete tension specimen, Eng. Frac. Mech., Volume 65 (2000) no. 2-3, pp. 111-131
[46] Measurement of the intrinsic process zone in rock using acoustic emission, Int. J. Rock Mech. Min. Sci., Volume 35 (1998) no. 3, pp. 291-299
[47] The fracture process zone in granite: evidence and effect, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 24 (1987), pp. 235-246
[48] On the size and shape of the process zone, Eng. Frac. Mech., Volume 26 (1987) no. 4, pp. 491-503
[49] Experimental determination of the fracture process zone in concrete, Cem. Concr. Res., Volume 13 (1983) no. 4, pp. 557-567
[50] The process zone: A microstructural view of fault growth, J. Geophys. Res.: Solid Earth, Volume 103 (1998) no. B6, pp. 12223-12237
[51] Crack propagation and fracture process zone (FPZ) of wood in the longitudinal direction determined using digital image correlation (DIC) technique, Remote Sens., Volume 11 (2019) no. 13, pp. 1-13 | DOI
[52] Correlation between the internal length, the fracture process zone and size effect in model materials, Mater. Struct., Volume 38 (2005) no. 2, pp. 201-210
[53] Fracture in glass via molecular dynamics simulations and atomic force microscopy experiments, Phys. Chem. Glas.: Eur. J. Glass Sci. Technol. B, Volume 51 (2010) no. 2, pp. 127-132
[54] Fracture process zone: Microstructure and nanomechanics in quasi-brittle materials, PhD thesis, Massachusetts Institute of Technology (2013)
[55] Identification of a cohesive zone model from digital images at the micron-scale, J. Mech. Phys. Solids, Volume 61 (2013) no. 6, pp. 1407-1420
[56] Slow crack growth in polycarbonate films, Europhys. Lett., Volume 71 (2005) no. 2, pp. 242-248
[57] Optical interference measurements and fracture mechanics analysis of crack tip craze zones, Adv. Polym. Sci., Volume 52-53 (1983), pp. 105-168
[58] Micromechanics of fracture under static and fatigue loading: Optical interferometry of crack tip craze zones, Adv. Poly. Sci., Volume 91-92 (1990), pp. 137-214
[59] Ultralight metallic microlattices, Science, Volume 334 (2011) no. 6058, pp. 962-965 | DOI
[60] Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech.—A/Solids, Volume 21 (2002) no. 1, pp. 61-72 | DOI
[61] Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates, J. Mater. Sci., Volume 13 (1978), pp. 195-201 | DOI
[62] Mémoire sur l’équilibre intérieur des corps solides homogènes, J. Reine Angew. Math., Volume 7 (1831), pp. 381-413
[63] Theorie der technischen Formzahl, Forsch. Ingenieurwes. A, Volume 7 (1936) no. 6, pp. 271-274 | DOI
[64] Methods of Correlating Data from Fatigue Tests of Stress Concentration Specimens, Macmillan, New York, 1938, 179 pages (Stephen Timoshenko Anniversary Volume)
[65] Stress fracture criteria for laminated composites containing stress concentrations, J. Compos. Mater., Volume 8 (1974) no. 3, pp. 253-265 | DOI
[66] Engineering formulae for fatigue strength reduction due to crack-like notches, Int. J. Frac., Volume 22 (1983) no. 2, p. R39-R46 | DOI
[67] The Theory of Critical Distances, Elsevier Science Ltd, Oxford, 2007
[68] Theory of multiple fracture of fibrous composites, J. Mater. Sci., Volume 8 (1973) no. 3, pp. 352-362 | DOI
[69] Finite thermoelastic fracture criterion with application to laminate cracking analysis, J. Mech. Phys. Solids, Volume 44 (1996) no. 7, pp. 1129-1145 | DOI
[70] Fracture mechanics of composites with residual stresses, traction-loaded cracks, and imperfect interfaces, Fracture of Polymers, Composites and Adhesives (J. G. Williams; A. Pavan, eds.) (European Structural Integrity Society), Volume 27, Elsevier, Les Diablerets, 2000, pp. 111-121 | DOI
[71] A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., Volume 86 (2016) no. 1-2, pp. 375-401 | DOI
[72] A review of the coupled criterion, J. Theor. Comput. Appl. Mech. (2024), 11072 | DOI
[73] II. On the stability of loose earth, Philos. Trans. R. Soc. Lond., Volume 147 (1857), pp. 9-27
[74] Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion, Theor. Appl. Frac. Mech., Volume 109 (2020), 102736 | DOI
[75] Revisiting the strength of micron-scale ceramic platelets, J. Am. Ceramic Soc., Volume 103 (2020), pp. 6991-7000 | DOI
[76] Computation of Singular Solutions in Elliptic Problems and Elasticity, Wiley, USA, 1987
[77] Numerical implementation of the coupled criterion: Matched asymptotic and full finite element approaches, Finite Element Anal. Des., Volume 168 (2020), 103344 | DOI
[78] Prediction of crack initiation at blunt notches and cavities—size effects, Eng. Frac. Mech., Volume 74 (2007) no. 15, pp. 2420-2436 | DOI
[79] The fracture mechanics of finite crack extension, Eng. Frac. Mech., Volume 72 (2005) no. 7, pp. 1021-1038 | DOI
[80] Size-effect on the apparent tensile strength of brittle materials with spherical cavities, Theor. Appl. Frac. Mech., Volume 116 (2021), 103120 | DOI
[81] Discussion on equivalence of the theory of critical distances and the coupled stress and energy criterion for fatigue limit prediction of notched specimens, Int. J. Fatigue, Volume 131 (2020), 105236 | DOI
[82] Fracture assessment of sharp V-notched components under Mode II loading: a comparison among some recent criteria, Theor. Appl. Frac. Mech., Volume 85 (2016), pp. 217-226 | DOI
[83] Failure criteria for brittle elastic materials, Int. J. Frac., Volume 125 (2004), pp. 307-333 | DOI
[84] et al. Tailoring the theory of critical distances to better assess the combined effect of complex geometries and process-inherent defects during the fatigue assessment of SLM Ti-6Al-4V, Int. J. Fatigue, Volume 172 (2023), 107602 | DOI
[85] Fatigue life prediction at mesoscopic scale of samples containing casting defects: A novel energy based non-local model, Int. J. Fatigue, Volume 188 (2024), 108485 | DOI
[86] Dynamic crack initiation assessment with the coupled criterion, Eur. J. Mech.—A/Solids, Volume 93 (2022), 104483 | DOI
[87] Transverse cracking induced acoustic emission in carbon fiber-epoxy matrix composite laminates, Materials, Volume 15 (2022), pp. 1-15 | DOI
[88] Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI
[89] The Variational Approach to Fracture, Springer, Netherlands, 2008
[90] Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach, Compos. Sci. Technol., Volume 150 (2017), pp. 205-216 | DOI
[91] Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Eng., Volume 336 (2018), pp. 213-236 | DOI
[92] Analysis of Hertzian indentation fracture in the framework of finite fracture mechanics, Int. J. Frac., Volume 206 (2017), pp. 67-79 | DOI
[93] Phase field modeling of Hertzian indentation fracture, J. Mech. Phys. Solids, Volume 143 (2020), 104026 | DOI
[94] Revisiting nucleation in the phase-field approach to brittle fracture, J. Mech. Phys. Solids, Volume 142 (2020), 104027 | DOI
[95] Prediction of crack nucleation and propagation in porous ceramics using the phase-field approach, Theor. Appl. Frac. Mech., Volume 119 (2022), 103349 | DOI
[96] Finite fracture mechanics from the macro- to the micro-scale. comparison with the phase field model, Procedia Struct. Integr., Volume 42 (2022), pp. 553-560 (23 European Conference on Fracture) | DOI
[97] Phase-field simulation and coupled criterion link echelon cracks to internal length in antiplane shear, J. Mech. Phys. Solids, Volume 188 (2024), 105675 | DOI
[98] An assessment of phase field fracture: crack initiation and growth, Philos. Trans. R. Soc. A, Volume 379 (2021) no. 2203, 20210021 | DOI
[99] Understanding regularized crack initiation through the lens of finite fracture mechanics, preprint, 2024 | DOI
[100] Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Eng., Volume 50 (2001) no. 7, pp. 1701-1736 | DOI
[101] On the influence of the shape of the interface law on the application of cohesive-zone models, Compos. Sci. Technol., Volume 66 (2006) no. 6, pp. 723-730 | DOI
[102] Short cracks and V-notches: finite fracture mechanics vs cohesive crack model, Eng. Frac. Mech., Volume 168 (2016), pp. 2-12 | DOI
[103] Finite fracture mechanics and cohesive crack model: weight functions vs cohesive laws, Int. J. Solids Struct., Volume 156-157 (2019), pp. 126-136 | DOI
[104] Initiation of edge debonding: coupled criterion versus cohesive zone model, Int. J. Frac., Volume 199 (2016), pp. 157-168 | DOI
[105] Crack initiation at a V-notch—comparison between a brittle fracture criterion and the Dugdale cohesive model, C. R. Méc., Volume 335 (2007) no. 7, pp. 388-393 | DOI
[106] Static and fatigue failure of quasi-brittle materials at a V-notch using a Dugdale model, Eur. J. Mech.—A/Solids, Volume 29 (2010) no. 2, pp. 109-118 | DOI
[107] Fiber-size effects on the onset of fiber–matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models, Eng. Frac. Mech., Volume 115 (2014), pp. 96-110 | DOI
[108] An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams, Int. J. Solids Struct., Volume 53 (2015), pp. 92-106 | DOI
[109] A model for brittle failure in adhesive lap joints of arbitrary joint configuration, Compos. Struct., Volume 133 (2015), pp. 707-718 | DOI
[110] Revisiting the problem of debond initiation at fibre-matrix interface under transversal biaxial loads - a comparison of several non-classical fracture mechanics approaches, Trans Tech Publications, Ltd, Volume 713 (2016), pp. 232-235 | DOI
[111] Mode-I debonding of a double cantilever beam: a comparison between cohesive crack modeling and finite fracture mechanics, Int. J. Solids Struct., Volume 124 (2017), pp. 57-72 | DOI
[112] Asymmetric crack onset at open-holes under tensile and in-plane bending loading, Int. J. Solids Struct., Volume 113-114 (2017), pp. 10-23 | DOI
[113] Size effect in particle debonding: comparisons between finite fracture mechanics and cohesive zone model, J. Compos. Mater., Volume 53 (2018) no. 14, pp. 1941-1954 | DOI
[114] Comparison between cohesive zone and coupled criterion modeling of crack initiation in rhombus hole specimens under quasi-static compression, Theor. Appl. Frac. Mech., Volume 99 (2019), pp. 51-59 | DOI
[115] Interface crack model using finite fracture mechanics applied to the double pull-push shear test, Int. J. Solids Struct., Volume 188-189 (2020), pp. 56-73 | DOI
[116] Critical length scale controls adhesive wear mechanisms, Nat. Commun., Volume 7 (2016) no. 1, 11816
[117] On the debris-level origins of adhesive wear, Proc. Nat. Acad. Sci., Volume 114 (2017) no. 30, pp. 7935-7940
[118] Scaling of brittle failure: strength versus toughness, Int. J. Frac., Volume 210 (2018), pp. 153-166
[119] Failure strength of brittle materials containing nanovoids, Phys. Rev. B, Volume 75 (2007) no. 22, 224110
[120] Analysis of the failure at notches and cavities in quasi-brittle media using the Thick Level Set damage model and comparison with the coupled criterion, Int. J. Frac., Volume 211 (2018), pp. 253-280 | DOI
[121] A coupled peridynamic strength and fracture criterion for openhole failure analysis of plates under tensile load, Eng. Frac. Mech., Volume 204 (2018), pp. 103-118 | DOI
[122] Failure analysis of plates with singular and non-singular stress raisers by a coupled peridynamic model, Int. J. Mech. Sci., Volume 157-158 (2019), pp. 446-456 | DOI
[123] Comparison between two nonlocal criteria: a case study on pressurized holes, Procedia Struct. Integr., Volume 33 (2021), pp. 456-464 | DOI
[124] How to use damage mechanics, Nucl. Eng. Design, Volume 80 (1984) no. 2, pp. 233-245
[125] Rupture time under creep conditions, Izvestia Akademii Nauk SSSR, Otdelenie tekhnicheskich nauk (1958) no. 8, pp. 26-31 Leningrad University (translated) (in Russian) reprint: https://doi.org/10.1023/A:1018671022008
[126] Nonlocal damage theory, J. Eng. Mech., Volume 113 (1987) no. 10, pp. 1512-1533
[127] Continuum damage mechanics and local approach to fracture: numerical procedures, Comput. Methods Appl. Mech. Eng., Volume 92 (1991) no. 2, pp. 141-155
[128] A gradient-enhanced damage approach to fracture, J. Phys. IV, Volume 6 (1996) no. C6, pp. 491-502
[129] Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Eng., Volume 39 (1996) no. 19, pp. 3391-3403
[130] Gradient-enhanced damage modelling of concrete fracture, Mech. Cohesive-frict. Mater. Int. J. Exp. Model. Comput. Mater. Structures, Volume 3 (1998) no. 4, pp. 323-342
[131] Fracture in quasi-brittle materials: a review of continuum damage-based approaches, Eng. Frac. Mech., Volume 69 (2002) no. 2, pp. 95-112
[132] Strain-based transient-gradient damage model for failure analyses, Comput. Methods Appl. Mech. Eng., Volume 160 (1998) no. 1-2, pp. 133-153
[133] Measurement of characteristic length of nonlocal continuum, J. Eng. Mech., Volume 115 (1989) no. 4, pp. 755-767
[134] Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints, Eng. Frac. Mech., Volume 138 (2015), pp. 185-201 | DOI
[135] The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Section B, Volume 64 (1951) no. 9, pp. 747-753 | DOI
[136] The cleavage strength of polycrystals, J. Iron Steel Inst., Volume 174 (1953), pp. 25-28
[137] Thermodynamically consistent linear-gradient damage model in Abaqus, Eng. Frac. Mech., Volume 266 (2022), 108390 | DOI
[138] Interface debonding ahead of a primary crack, J. Mech. Phys. Solids, Volume 48 (2000) no. 10, pp. 2137-2161 | DOI
[139] Fatigue crack nucleation at a stress concentration point, CP2012 Conference Proceedings, Volume 46, ESIS Publishing House, 2012 https://www.gruppofrattura.it/ocs/index.php/esis/CP2012/paper/viewFile/9235/5996
[140] Prediction of failure of hybrid composites with ultra-thin carbon/epoxy layers using the Coupled Criterion, Eng. Frac. Mech., Volume 281 (2023), 109053 | DOI
[141] Asymptotic analysis of the potential energy difference because of a crack at a V-notch edge in a 3D domain, Eng. Frac. Mech., Volume 131 (2014), pp. 232-256 | DOI
[142] Energy release rate cannot predict crack initiation orientation in domains with a sharp V-notch under mode III loading, Eng. Frac. Mech., Volume 141 (2015), pp. 230-241 | DOI
[143] Revisiting facet nucleation under mixed mode I+III loading with T-stress and mode-dependent fracture properties, Int. J. Frac., Volume 242 (2023), pp. 85-106 | DOI
[144] An assessment of the phase field formulation for crack growth, Comput. Methods Appl. Mech. Eng., Volume 294 (2015), pp. 313-330 | DOI
[145] Failure initiation at V-notch tips in quasi-brittle materials, Int. J. Solids Struct., Volume 122-123 (2017), pp. 1-13 | DOI
[146] A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model, Comput. Methods Appl. Mech. Eng., Volume 350 (2019), pp. 100-122
[147] Two-scale concurrent simulations for crack propagation using FEM–DEM bridging coupling, Comput. Part. Mech., Volume 11 (2024) no. 5, pp. 2235-2243
Cité par Sources :
Commentaires - Politique