[Dynamique des fissures dans les matériaux désordonnés]
Prévoir quand les matériaux cassent constitue un enjeu majeur dans de nombreux domaines industriels, géologiques et sociétaux. Cela reste une question largement ouverte : la concentration des contraintes par les fissures et défauts rend en effet la dynamique de rupture à l'échelle macroscopique très sensible au désordre de microstructure à des échelles très fines. Cela se traduit par des fluctuations statistiques importantes et des comportements sous homogénéisation non triviaux, difficiles à décrire dans le cadre des approches continues de l'ingénierie mécanique.
Nous examinons ici ces questions. Nous verrons :
- – comment la mécanique linéaire élastique de la rupture contourne la difficulté en ramenant le problème à la déstabilisation d'une fissure unique dans un matériau effectif « moyen » sans défauts ;
- – comment la fissuration lente présente, dans certains cas, une dynamique saccadée, composée d'événements violents et intermittents, incompatible avec l'approche précédente, mais qui peut s'expliquer par certains paradigmes issus de la physique statistique ;
- – comment des fissures anormalement rapides émergent parfois du fait de la formation de microfissures à très petites échelles.
Predicting when rupture occurs or cracks progress is a major challenge in numerous fields of industrial, societal, and geophysical importance. It remains largely unsolved: stress enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely sensitive to the microscale material disorder. This results in giant statistical fluctuations and non-trivial behaviors upon upscaling, difficult to assess via the continuum approaches of engineering.
These issues are examined here. We will see:
- – how linear elastic fracture mechanics sidetracks the difficulty by reducing the problem to that of the propagation of a single crack in an effective material free of defects;
- – how slow cracks sometimes display jerky dynamics, with sudden violent events incompatible with the previous approach, and how some paradigms of statistical physics can explain it;
- – how abnormally fast cracks sometimes emerge due to the formation of microcracks at very small scales.
Mot clés : Fracture, Solides désordonnés, Crackling, Lois d'échelle, Transition dynamique, Instabilités, Approche stochastique
Daniel Bonamy 1
@article{CRPHYS_2017__18_5-6_297_0, author = {Daniel Bonamy}, title = {Dynamics of cracks in disordered materials}, journal = {Comptes Rendus. Physique}, pages = {297--313}, publisher = {Elsevier}, volume = {18}, number = {5-6}, year = {2017}, doi = {10.1016/j.crhy.2017.09.012}, language = {en}, }
Daniel Bonamy. Dynamics of cracks in disordered materials. Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 297-313. doi : 10.1016/j.crhy.2017.09.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.012/
[1] A statistical theory of the strength of the materials, Proc. R. Swed. Inst. Eng. Res. (1939), p. 151
[2] Dynamic fracture of nominally brittle materials, Int. J. Fract., Volume 90 (1998), pp. 83-102 | DOI
[3] Instability in dynamic fracture, Phys. Rep., Volume 313 (1999), pp. 1-108
[4] Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Nav. Archit., Volume 55 (1913), p. 219
[5] The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. A, Volume 221 (1920), p. 163
[6] Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., Volume 24 (1957), p. 361
[7] Fracture of Brittle Solids, Cambridge Solide State Science, 1993
[8] Crack propagation in an elastic solid subjected to general loading – I. Constant rate of extension, J. Mech. Phys. Solids, Volume 20 (1972) no. 3, pp. 129-140
[9] Crack propagation in an elastic solid subjected to general loading – II. Non-uniform rate of extension, J. Mech. Phys. Solids, Volume 20 (1972) no. 3, pp. 141-152
[10] Crack propagation in an elastic solid subjected to general loading – III. Stress wave loading, J. Mech. Phys. Solids, Volume 21 (1973) no. 2, pp. 47-61
[11] Dynamic Fracture Mechanics, Cambridge University Press, 1990
[12] Dynamic Fracture, Elsevier Ltd., 2004
[13] Acquisition of inertia by a moving crack, Phys. Rev. Lett., Volume 104 (2010)
[14] The energy release in great earthquakes, J. Geophys. Res., Volume 82 (1977), pp. 2981-2987
[15] Unified scaling law for earthquakes, Phys. Rev. Lett., Volume 88 (2002) no. 17 http://prl.aps.org/pdf/PRL/v88/i17/e178501
[16] On after-shocks of eartquakes, J. Coll. Sci., Imp. Univ. Tokyo, Volume 7 (1894), pp. 111-200
[17] The centenary of the omori formula for dacay law of aftershock activity, J. Phys. Earth, Volume 43 (1995), pp. 1-33
[18] Aftershocks and eartquakes statistics (iii), J. Fac. Sci., Hokkaido Univ., Ser. VII, Volume 3 (1971), pp. 380-441
[19] Is earthquake triggering driven by small earthquakes?, Phys. Rev. Lett., Volume 91 (2003) no. 5
[20] Lateral inhomogeneities of the upper mantle, Tectonophysics, Volume 2 (1965) no. 6, pp. 483-514 http://www.sciencedirect.com/science/article/pii/004019516590003X
[21] Mechanical response and fracture dynamics of polymeric foams, J. Phys., Appl. Phys., Volume 42 (2009)
[22] Experimental evidence for critical dynamics in microfracturing processes, Phys. Rev. Lett., Volume 73 (1994), p. 3423
[23] Acoustic emission from paper fracture, Phys. Rev. Lett., Volume 89 (2002) no. 18
[24] Avalanches in wood compression, Phys. Rev. Lett., Volume 115 (2015) no. 5 | DOI
[25] Analogies between the cracking noise of ethanol-dampened charcoal and earthquakes, Phys. Rev. Lett., Volume 115 (2015) no. 2 | DOI
[26] Statistical similarity between the compression of a porous material and earthquakes, Phys. Rev. Lett., Volume 110 (2013) | arXiv
[27] Crackling noise and its dynamics in fracture of disordered media, J. Phys. D, Appl. Phys., Volume 42 (2009)
[28] Intermittency and roughening in the failure of brittle heterogeneous materials, J. Phys. D, Appl. Phys., Volume 42 (2009) no. 21 http://stacks.iop.org/0022-3727/42/i=21/a=214014
[29] Dynamic fracture model for acoustic emission, Eur. Phys. J. B, Volume 36 (2003), pp. 203-207
[30] Dynamical event during slow crack propagation, Phys. Rev. Lett., Volume 87 (2001)
[31] Local waiting time fluctuations along a randomly pinned crack front, Phys. Rev. Lett., Volume 96 (2006)
[32] Subcritical statistics in rupture of fibrous materials: experiments and model, Phys. Rev. Lett., Volume 93 (2004)
[33] Effect of the porosity on the fracture surface roughness of sintered materials: from anisotropic to isotropic self-affine scaling, Phys. Rev. E, Volume 91 (2015) no. 1 | DOI
[34] Fluctuations of global energy release and crackling in nominally brittle heterogeneous fracture, Phys. Rev. Lett., Volume 113 (2014) no. 26 | DOI
[35] J. Barés, A. Dubois, L. Hattali, D. Dalmas, D. Bonamy, Aftershock sequences and seismic-like organization of acoustic events produced by a single propagating tensile crack, submitted for publication.
[36] Crackling noise, Nature, Volume 410 (2001), pp. 242-250 | arXiv
[37] Power laws in economics and finance: some ideas from physics, Quant. Finance, Volume 1 (2001), pp. 105-112
[38] Acoustic emission from crumpling paper, Phys. Rev. E, Volume 54 (1996) no. 1, p. 278
[39] Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model, Int. J. Electr. Power Energy Syst., Volume 27 (2005) no. 4, pp. 318-326
[40] A first order perturbation analysis on crack trapping by arrays of obstacles, J. Appl. Mech., Volume 56 (1989), p. 828
[41] Models of fractal cracks, Phys. Rev. Lett., Volume 71 (1993), pp. 2240-2243
[42] Interfacial crack pinning: effect of nonlocal interactions, Phys. Rev. Lett., Volume 74 (1995), pp. 1787-1790
[43] The shape of slowly growing cracks, Europhys. Lett., Volume 30 (1995), pp. 87-92
[44] Quasistatic crack propagation in heterogeneous media, Phys. Rev. Lett., Volume 79 (1997), p. 873
[45] Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics, Phys. Rev. Lett., Volume 97 (2006)
[46] Failure of heterogeneous materials: a dynamic phase transition?, Phys. Rep., Volume 498 (2011), pp. 1-44
[47] On perturbations of plane cracks, Int. J. Solids Struct., Volume 35 (1998) no. 26–27, pp. 3419-3453 http://www.sciencedirect.com/science/article/pii/S002076839700231X
[48] 1st-order variation in elastic fields due to variation in location of a planar crack front, J. Appl. Mech., Volume 52 (1985), pp. 571-579
[49] Critical dynamics of contact line depinning, Phys. Rev. E, Volume 49 (1994)
[50] A model for contact-angle hysteresis, J. Chem. Phys., Volume 81 (1984), pp. 552-562
[51] Interface depinning, self-organized criticality, and the barkhausen effect, Phys. Rev. Lett., Volume 75 (1995), pp. 276-279
[52] Scaling exponents for barkhausen avalanches in polycrystalline and amorphous ferromagnets, Phys. Rev. Lett., Volume 84 (2000), pp. 4705-4708
[53] Interface fluctuations in disordered systems: 5-ε expansion and failure of dimensional reduction, Phys. Rev. Lett., Volume 56 (1986) no. 18, p. 1964
[54] Renormalization of pinned elastic systems: how does it work beyond one loop?, Phys. Rev. Lett. (2001), p. 1785
[55] Avalanche-size distribution at the depinning transition: a numerical test of the theory, Phys. Rev. B, Volume 80 (2009)
[56] Nonstationary dynamics of the Alessandro–Beatrice–Bertotti–Montorsi model, Phys. Rev. E, Volume 85 (2012)
[57] Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition, Phys. Rev. Lett., Volume 101 (2008) no. 4 http://prl.aps.org/pdf/PRL/v101/i4/e045501
[58] Nominally brittle cracks in inhomogeneous solids: from microstructural disorder to continuum-level scale, Front. Phys., Volume 2 (2014) | DOI
[59] Crackling versus continuumlike dynamics in brittle failure, Phys. Rev. Lett., Volume 111 (2013)
[60] Fracture processes observed with a cryogenic detector, Phys. Lett. A, Volume 356 (2006), pp. 262-266
[61] Brittle–quasibrittle transition in dynamic fracture: an energetic signature, Phys. Rev. Lett., Volume 104 (2010) no. 4 http://prl.aps.org/pdf/PRL/v104/i4/e045501
[62] Damage mechanisms in the dynamic fracture of nominally brittle polymers, Int. J. Fract., Volume 184 (2013) no. 1–2, pp. 93-111 | DOI
[63] Zum bruchvorgang bei sprodem stoffverhalten unter ein-and mehrachsigen beanspruchungen, Osterr. Ing. Arch., Volume 7 (1953), pp. 49-70
[64] On the role of microcracks in the dynamic fracture of brittle materials, J. Phys. Mech. Solids, Volume 45 (1997), pp. 535-563
[65] Dynamic Fracture in Brittle Amorphous Materials: Dissipation Mechanisms and Dynamically-Induced Microcracking in Polymethylmethalcrylate (PMMA), École Polytechnique, 2009 (Ph.D. thesis)
[66] Experimental observation and computer simulation of conic markings on fracture surfaces of polymers, J. Mater. Sci., Volume 45 (2010), p. 3088
[67] Impact-induced tensional failure in rocks, J. Geophys. Res., Planets, Volume 98 (1993), p. 1185
[68] Fracture in glass via molecular dynamics simulations and atomic force microscopy experiments, Phys. Chem. Glasses B, Volume 51 (2010), p. 127
[69] Atomistic aspects of crack propagation in brittle materials: multimillion atom molecular dynamics simulations, Annu. Rev. Mater. Res., Volume 32 (2002), pp. 377-400
[70] Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses, Phys. Rev. Lett., Volume 107 (2011)
[71] Understanding fast macroscale fracture from microcrack post mortem patterns, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 390-394 http://www.pnas.org/content/109/2/390.full
[72] Intersonic shear rupture mechanism, Int. J. Rock Mech. Min. Sci., Volume 45 (2008) no. 6, pp. 914-928 | DOI
[73] The effect of loading rate on ductile fracture toughness and fracture surface roughness, J. Mech. Phys. Solids, Volume 76 (2015), pp. 20-46 | DOI
[74] Instability in dynamic fracture, Phys. Rev. Lett., Volume 67 (1991), pp. 457-460
[75] Confirming the continuum theory of dynamic brittle fracture for fast cracks, Nature, Volume 397 (1999) no. 6717, pp. 333-335 http://www.nature.com/nature/journal/v397/n6717/full/397333a0.html
[76] Universality and hysteretic dynamics in rapid fracture, Phys. Rev. Lett., Volume 94 (2005) no. 22 | DOI
[77] Origin of the microbranching instability in rapid cracks, Phys. Rev. Lett., Volume 114 (2015) no. 5 | DOI
[78] Breakdown of linear elastic fracture mechanics near the tip of a rapid crack, Phys. Rev. Lett., Volume 101 (2008)
[79] Weakly nonlinear theory of dynamic fracture, Phys. Rev. Lett., Volume 101 (2008)
[80] A criterion for crack nucleation at a notch in homogeneous materials, C. R. Acad. Sci., IIB, Volume 329 (2001) no. 2, pp. 97-102
[81] Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech. A, Solids, Volume 21 (2002) no. 1, pp. 61-72
[82] Interaction of sound with fast crack propagation, Phys. Rev. Lett., Volume 80 (1998), pp. 341-344
[83] Propagating solitary waves along a rapidly moving crack front, Nature, Volume 410 (2001), pp. 68-71
[84] Interaction of shear waves and propagating cracks, Phys. Rev. Lett., Volume 91 (2003)
[85] Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface roughening, Int. J. Fract., Volume 134 (2005), pp. 1-22
[86] Dynamic weight functions for a moving crack. I. Mode I loading, J. Mech. Phys. Solids, Volume 43 (1995), pp. 319-341
[87] Three-dimensional dynamic perturbation of a propagating crack, J. Mech. Phys. Solids, Volume 45 (1997), pp. 591-610
[88] Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett., Volume 79 (1997), p. 877
[89] Can crack front waves explain the roughness of cracks?, J. Phys. Mech. Solids, Volume 50 (2002), pp. 1703-1725
[90] Dynamic stability of crack fronts: out-of-plane corrugations, Phys. Rev. Lett., Volume 110 (2013) no. 1 | DOI
Cité par Sources :
Commentaires - Politique